首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)为偶函数,且满足f’(x)+2f(x)-3∫0xf(t-x)dt=-3x+2,求f(x).
设f(x)为偶函数,且满足f’(x)+2f(x)-3∫0xf(t-x)dt=-3x+2,求f(x).
admin
2018-05-25
40
问题
设f(x)为偶函数,且满足f’(x)+2f(x)-3∫
0
x
f(t-x)dt=-3x+2,求f(x).
选项
答案
∫
0
x
f(t-x)dt=-∫
0
x
(t-x)d(x-t)=-∫
x
0
f(-u)du=∫
0
x
f(u)du,则有f’(x)+2f(x)-3∫
0
x
f(u)du=-3x+2,因为f(x)为偶函数,所以f’(x)是奇函数,于是f’(0)=0,代入上式得f(0)=1.将f’(x)+2f(x)-3∫
0
x
f(u)du=-3x+2两边对x求导数得f’’(x)+2f’(x)-3f(x)=-3,其通解为f(c)=C
1
e
x
+C
2
e
-3x
+1,将初始条件代入得f(x)=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/8KX4777K
0
考研数学三
相关试题推荐
设函数f(x)有连续导数,F(x)=∫0xf(t)fˊ(2a-t)dt.证明:F(2a)-2F(a)=f2(a)-f(0)f(2a).
设f(x)在区间[0,1]上连续,在(0,1)内可导,且满足f(1)=3f(x)dx.证明:存在ξ∈(0,1),使得fˊ(ξ)=2ξf(ξ).
设函数f(y)的反函数f-1(x)及fˊ[f-1(x)]与fˊˊ[f-1(x)]都存在,且f-1[f-1(x)]≠0.证明:
如果数列{xn}收敛,{yn}发散,那么{xnyn}是否一定发散?如果{xn}和{yn}都发散,那么{xnyn}的敛散性又将如何?
设函数f(x)=(x>0),证明:存在常数A,B,使得当x→0+时,恒有f(x)=e+Ax+Bx2+o(x2),并求常数A,B.
设f(x)具有二阶导数,且fˊˊ(x)>0.又设u(t)在区间[0,a](或[a,0])上连续.证明:
设f(x,y)具有二阶连续偏导数.证明:由方程f(x,y)=0所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是f(a,b)=0,fˊx(a,b)=0,fˊy(a,b)≠0.且当r(a,b)>0时,b=φ(a)是极大值;当r(a,b)
已知函数u=u(x,y)满足方程.试选择参数a,b,利用变换u(x,y)=v(x,y)eax+by均将原方程变形,使新方程中不出现一阶偏导数项.
设二维随机变量(X,Y)在区域D={(x,y)|1≤x≤e2,0≤y≤}上服从均匀分布,则(X,Y)的关于X的边缘概率密度Fx(x)在点x=e处的值为________.
设且f(0)=0,求函数f(x)和f(lnx).
随机试题
欧洲大多数跨国公司的组织形式是【 】
A.利血平B.硝苯地平C.氢氯噻嗪D.哌唑嗪E.β受体拮抗药高血压伴精神抑郁者,不宜选用的药物是
患者,女性,23岁,右足癣并感染1周,2天前开始出现右小腿有片状红疹,颜色鲜红,中间较淡,边缘清楚,右腹股沟淋巴结肿大,诊断为
某人患1型糖尿病,查餐后2h血糖15mmol/L(270mg/d1)。给胰岛素静滴,静滴时病人自觉多汗、手抖、饥饿,应考虑其原因是
甲、乙2人互发E-MAIL协商洽谈合同,4月30日甲称:“我有笔记本电脑一台,配置为……,九成新,8000元欲出手。”5月1日乙回电称:“东西不错,7800元可要。”甲于5月2日回复:“可以,5月7日到我这儿来。”乙于5月4日回电:“同意”,甲于当日收到。
2011年12月,甲市乙县国税局对锦绣服装公司进行税务检查时发现,该公司一笔账务处理异常。乙县国税局认为,该公司购进的某批布料用于非应税项目,其进项税额276000元不应抵扣。乙县国税局决定:依法追缴该公司少缴的增值税税款,并加收相应的滞纳金。2
(2016年)2015年1月,甲公司与乙公司签订劳务派遣协议,派遣刘某到乙公司从事临时性工作。2015年5月,临时性工作结束,两公司未再给刘某安排工作,也未再向其支付任何报酬。2015年7月,刘某得知自2015年1月被派遣以来,两公司均未为其缴纳社会保险费
导游讲解时,运用目光的方法很多,下面属于目光的运用的是()
Thehighestanxietymomentintheholidayseasonmustbethemomentjustbeforeyourlovedonesunwraptheirgifts.Theribbonc
Whatisthepurposeofthetalk?
最新回复
(
0
)