首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,若存在正整数k,使线性方程组AkX=0有解向量α,且Ak-1α≠0,证明:向量组α,Aα,…,Ak-1α线性无关.
设A是n阶矩阵,若存在正整数k,使线性方程组AkX=0有解向量α,且Ak-1α≠0,证明:向量组α,Aα,…,Ak-1α线性无关.
admin
2018-07-27
60
问题
设A是n阶矩阵,若存在正整数k,使线性方程组A
k
X=0有解向量α,且A
k-1
α≠0,证明:向量组α,Aα,…,A
k-1
α线性无关.
选项
答案
设有一组数λ
0
,λ
1
,…,λ
k-1
使λ
0
α+λ
1
Aα+…+λ
k-1
A
k-1
α=0,两端左乘A
k-1
,由于A
k-m
α=0(m=0,1,2,…),[*]λ
0
A
k-1
α=0,又A
k-1
α≠0,[*]λ
0
=0,同理可证λ
1
=…=λ
k-1
=0,故α,Aα,…,A
k-1
α线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/pWW4777K
0
考研数学三
相关试题推荐
设随机试验成功的概率p=0.20,现在将试验独立地重复进行100次,则试验成功的次数介于16和32次之间的概率α=_________.
若α1=(1,0,5,2)T,α2=(3,-2,3,-4)T,α3=(-1,1,t,3)T线性相关,则t=______.
如果秩r(α1,α2,…,αs)=r(α1,α2,…,αs,αs+1),证明αs+1可由α1,α2,…,αs线性表出.
设H=,其中A,B分别是m阶和n阶可逆矩阵,证明:矩阵H可逆,并求其逆H-1.
设A是3阶实对称矩阵,A的特征值是6,-6,0,其中λ=6与λ=0的特征向量分别是(1,a,1)T及(a,a+1,1)T,求矩阵A.
设A是3阶实对称矩阵,特征值是0,1,2.如果λ=0与λ=1的特征向量分别是α1=(1,2,1)T与α2=(1,-1,1)T,则λ=2的特征向量是_______.
设二维非零向量α不是二阶方阵A的特征向量.若A2a+Aα一6α=0,求A的特征值,讨论A可否对角化;
设方阵A1与B1合同,A2与B2合同,证明:合同。
随机试题
泽泻性__________,既能清__________之热,又能泄__________之虚火,__________者尤为适宜。
下列属于药物性质影响透皮吸收的因素的是
处方分析A、醋酸氢化可的松微晶25gB、氯化钠3gC、羧甲基纤维素钠5gD、硫柳汞0.01gE、聚山梨酯801.5g注射用水加至1000ml润湿剂
卧床病人的头发已纠结成团时,欲湿润梳通头发可用
某工程项目合同工期为18个月。施工合同签订以后,施工单位编制了一份初始网络计划,如下图所示。由于该工程施工工艺的要求,计划中工作C、工作H和工作J需共用一台起重施工机械,为此需要对初始网络计划作调整。
静态会汁等式是编制()的重要依据。
第一种人。能独立完成一件事的人;第二种人,能领导一群人的人;第三种人,能作出决策制定政策的人。你想要成为哪种人?
S城的人非常喜欢喝酒,经常出现酗酒闹事,影响了S城的治安环境。为了改善城市的治安环境,市政府决定:减少S城烈酒生产的产量。以下哪项最能对市政府的决定进行质疑?
Liketheflu,aperson’semotionalstatecanbecontagious.Watchsomeonecry,andyou’lllikelyfeelsad;thinkabouttheelder
计算机网络中常用的有线传输介质有()。
最新回复
(
0
)