首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
改变积分次序∫01dxf(x,y)dy=______.
改变积分次序∫01dxf(x,y)dy=______.
admin
2019-09-04
47
问题
改变积分次序∫
0
1
dx
f(x,y)dy=______.
选项
答案
∫
0
1
dy∫
0
1
f(x,y)dx+[*]f(x,y)dx
解析
如图,
D
1
={(x,y)|0≤x≤y,0≤y≤1},
D
2
={(x,y)|0≤x≤
},则
∫
0
1
f(x,y)dy=∫
0
1
dy∫
0
1
f(x,y)dx+
f(x,y)dx.
转载请注明原文地址:https://kaotiyun.com/show/pdJ4777K
0
考研数学三
相关试题推荐
设λ1、λn分别为n阶实对称矩阵的最小、最大特征值,X1,Xn分别为对应于λ1、λn的特征向量,记f(X)=XTAX/XTX,X∈Rn,X≠0求二元函数f(x,y)=(x2+y2≠0)的最大值及最大值点.
已知αi=(αi1,αi2…,αin)T(i=1,2,…,r;r<n)是n维实向量,且α1,α2,…,αr线性无关.已知β=(b1,b2,…,bn)T是线性方程组的非零解向量.试判断向量组α1,α2,…,αr,β的线性相关性.
设有矩阵Am×n,Bn×m,已知Em-AB可逆,证明:E-BA可逆,且(En-BA)-1=En+B(Em-AB)-1A.
设α1,α2,…,αk(k<n)是Rn中k个线性无关的列向量.证明:存在n阶满秩方阵P,使得P以α1,α2,…,αk为其前k列.
确定常数a和b的值,使
曲线y=(2x一1)e1/x的斜渐近线方程为______.
A,B是n阶可逆方阵,则下列结论正确的是()
设A是n阶矩阵,n维列向量α和β分别是A和AT的特征向量,特征值分别为1和2。(Ⅰ)证明βTα=0;(Ⅱ)求矩阵βαT的特征值;(Ⅲ)判断βαT是否相似于对角矩阵(要说明理由)。
(1)设y=f(x,t),其中t是由G(x,y,t)=0确定的x,y的函数,且f(x,t),G(x,y,t)一阶连续可偏导,求(2)设z=z(x,y)由方程z+lnz-∫xye-t2dt=1确定,求
微分方程y"-4y=xe2x+2sinx的特解形式为()。
随机试题
A.神经源性间歇跛行B.坐骨神经支配区的放射痛C.两者均有D.两者均无(1997年)第三腰椎横突综合征
风湿性心瓣膜疾病最常见侵犯的瓣膜是()。
A.五加皮B.桑寄生C.防风D.蝉蜕E.白花蛇
房地产法律的调整对象中,典型特征是其主体法律地位的不平等,是管理与被管理的关系属于()。
在正常使用情况下,开发商对销售的商品住宅的保修项目保修期限为1年的有()等。
(2004年第83题)下列建设工程竣工验收的必要条件中,()是错误的。
关于价差预备费,下列表述错误的是()。
部门预算服从单位预算。()
给定材料:1.从丰收的田野到电商大战的直播间,一批批新职业者在新业态的孕育下不断涌现,在中国经济大潮中奔涌向前。不过,前进的路上从无坦途,数字经济时代下,人才供给不足的“冰”和新职业领域人才需求旺盛的“火”,已成为新就业形态普遍存在的“成长烦恼”。新兴产
下列不属于中国共产党一大代表的是()。
最新回复
(
0
)