首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αn为n个线性无关的n维向量,且与向量β正交.证明:向量β为零向量.
设α1,α2,…,αn为n个线性无关的n维向量,且与向量β正交.证明:向量β为零向量.
admin
2021-11-15
21
问题
设α
1
,α
2
,…,α
n
为n个线性无关的n维向量,且与向量β正交.证明:向量β为零向量.
选项
答案
方法一 令A=[*],因为α
1
,α
2
,…,α
n
与β正交,所以Aβ=0,即β为方程组AX=0的解,而α
1
,α
2
,…,α
n
线性无关,所以r(A)=n,从而方程组AX=0只有零解,即β=0. 方法二 (反证法)不妨设β≠0,令正k
1
α
1
+k
2
α
2
+…+k
n
α
n
+k
0
β=0,上式两边左乘β
T
得k
1
β
T
α
1
+k
2
β
T
α
2
+…+k
n
β
T
α
n
+k
0
β
T
β=0, 因为α
1
,α
2
,…,α
n
与β正交,所以是k
0
β
T
β=0,即k
0
|β|
2
=0,从而k
0
=0,于是k
1
α
1
+k
2
α
2
+…+k
n
α
n
=0,再由α
1
,α
2
,…,α
n
线性无关,得k
1
=k
2
=…=k
n
=0,故α
1
,α
2
,…,α
n
,β线性无关,矛盾(因为当向量的个数大于向量的维数时向量组一定线性相关),所以β=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/pey4777K
0
考研数学二
相关试题推荐
设函数f(x,y,z)一阶连续可偏导且满足f(tx,ty,tz)=tkf(x,y,z)。证明:.
证明:r(A)=r(ATA).
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
设η为非零向量,,η为方程组AX=0的解,则a=______,方程组的通解为_______.
设n阶矩阵A的伴随矩阵A*≠O,且非齐次线性方程组AX=b有两个不同解η1,η2,则下列命题正确的是()。
设A为n阶矩阵,若Ak-1a≠0,而Aka=0.证明:向量组a,Aa,...,Ak-1a线性无关。
设,则a1,a2,a3,a4的一个极大线性无关组为______,其余的向量用极大线性无关组表示为_______.
设A是三阶矩阵,a1,a2,a3为三个三维线性无关的列向量,且满足Aa1=a2+a3,Aa2=a1+a3,Aa3=a1+a2.判断矩阵A可否对角化。
设四阶矩阵A=(α1,α2,α3,α4),方程组Ax=B的通解为(1,2,2,1)T+c(1,﹣2,4,0)T,c为任意常数。记B=(α3,α2,α1,β-α4),求Bx=α1-α2的通解。
微分方程dy/dx=y/(x+y4)的通解是.
随机试题
背景某新建机场场道的土方工程施工,在填筑过程中,施工单位根据现场实际情况选择细粒土,采用18t光轮压路机,分两层碾压。两层碾压完成后,检测了中线偏位(合格率90%)、纵断高程(合格率85%)、平整度(合格率85%)、宽度(合格率88%)及横坡(合格率92
财政支持农业农村发展的意义体现在()。
下列哪项是轻症急性胰腺炎治疗的最根本措施
男,35岁。左颌下区被拳击伤,随即伤区出现肿胀、淤斑;扪诊有波动感,张口度及咬合关系正常
在突发事件发生期间,扰乱社会秩序、市场秩序的,应当
下列关于土地权属争议的解决方式,说法有误的是()。
统计指标按照其所反映的内容及其数值的表现形式,可以分为()。
群众路线是党的生命线,也是人民政协的生命线。人民政协一头连着党政机关,一头连着群众。政协可以既做好各界群众的“代言人”,又当好党委、政府与群众的“连心桥”。这要求人民政协()。①要拓宽渠道,搭建载体,执政为民②进一步加强与各界群
下列关于太阳风的说法不正确的是()。
下面对于友元函数描述正确的是()。
最新回复
(
0
)