首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αn为n个线性无关的n维向量,且与向量β正交.证明:向量β为零向量.
设α1,α2,…,αn为n个线性无关的n维向量,且与向量β正交.证明:向量β为零向量.
admin
2021-11-15
30
问题
设α
1
,α
2
,…,α
n
为n个线性无关的n维向量,且与向量β正交.证明:向量β为零向量.
选项
答案
方法一 令A=[*],因为α
1
,α
2
,…,α
n
与β正交,所以Aβ=0,即β为方程组AX=0的解,而α
1
,α
2
,…,α
n
线性无关,所以r(A)=n,从而方程组AX=0只有零解,即β=0. 方法二 (反证法)不妨设β≠0,令正k
1
α
1
+k
2
α
2
+…+k
n
α
n
+k
0
β=0,上式两边左乘β
T
得k
1
β
T
α
1
+k
2
β
T
α
2
+…+k
n
β
T
α
n
+k
0
β
T
β=0, 因为α
1
,α
2
,…,α
n
与β正交,所以是k
0
β
T
β=0,即k
0
|β|
2
=0,从而k
0
=0,于是k
1
α
1
+k
2
α
2
+…+k
n
α
n
=0,再由α
1
,α
2
,…,α
n
线性无关,得k
1
=k
2
=…=k
n
=0,故α
1
,α
2
,…,α
n
,β线性无关,矛盾(因为当向量的个数大于向量的维数时向量组一定线性相关),所以β=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/pey4777K
0
考研数学二
相关试题推荐
设f(x)的一个原函数为=_________.
利用变换x=arctant将方程化为y关于t的方程,并求原方程的通解。
设f(x,y),g(x,y)在平面区域D上连续,且g(x,y)≥0,证明:存在(ε,η)∈D,使得.
证明:r(A)=r(ATA).
设A,B,C,D都是n阶矩阵,r(CA+DB)=n.设ξ1,ξ2,...,ξr与η1,η2,...,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,...,ξr,η1,η2,...,ηs线性无关。
设(I)a1,a2,a3,a4为四元非齐次线性方程组BX=b的四个解,其中,r(B)=2.求方程组(II)BX=0的基础解系。
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又且AB=O,求方程组AX=0的通解。
设,且存在三阶非零矩阵B,使得AB=O,则a=______,b=_______.
设A是m×s阶矩阵,B为s×n阶矩阵,则方程组BX=0与ABX=0同解的充分条件是()。
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明:AB=BA
随机试题
在国际经济组织的表决中,将表决权平均分配给各个按一定利益关系结成的集团的做法是()
A.鼻病取迎香B.下牙痛取合谷C.肾虚牙痛取太溪D.腰痛取委中E.外踝扭伤取阳池
小肠黏膜细胞中脂肪的合成主要途径是
下列关于民事第二审程序的表述,正确的是:()
计算机病毒是一种微生物病毒,会通过计算机传播给人类。()
皮亚杰认为认知阶段出现的先后次序是不变的。()
十九届三中全会指出,加强党的集中统一领导、实现机构职能优化协同高效的必然要求是()
有以下程序#include<iostream>#include<string>usingnamespacestd;classbase{private:char
America’smodernmusic:OneofAmerican’smostimportantexports:modemmusicThereasonsforitspopularity:itsfastp
A、Jointhecommunityserviceprogram.B、Interviewsomeimmigrants.C、Visitsomeimmigrants.D、TeachEnglishasapart-timejob.
最新回复
(
0
)