首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(I)设A是对角矩阵,并且对角线上元素两两不相等.证明和A乘积可交换的一定是对角矩阵.(2)n阶矩阵C如果和任何n阶矩阵乘积可交换,则C必是数量矩阵.
(I)设A是对角矩阵,并且对角线上元素两两不相等.证明和A乘积可交换的一定是对角矩阵.(2)n阶矩阵C如果和任何n阶矩阵乘积可交换,则C必是数量矩阵.
admin
2017-10-21
79
问题
(I)设A是对角矩阵,并且对角线上元素两两不相等.证明和A乘积可交换的一定是对角矩阵.(2)n阶矩阵C如果和任何n阶矩阵乘积可交换,则C必是数量矩阵.
选项
答案
(1)设B和A乘积可交换,要证明B是对角矩阵,即要说明B的对角线外的元素b
ij
(i≠j)都为0.设A的对角线元素为λ
1
,λ
2
,…,λ
n
则Ab的(i,j)位元素为λ
i
b
ij
而BA的(i,j)位元素为λ
j
b
ij
.因为AB=BA,得λ
i
b
ij
=λ
j
b
ij
.因为λ
i
≠λ
j
,所以b
ij
=0. (2)先说明C一定是对角矩阵.由于C与对角线上元素两两不相等的n阶对角矩阵乘积可交换,由(1)的结论得出C是对角矩阵. 再说明C的对角线元素c
11
,c
22
,…,c
nn
都相等. 构造n阶矩阵A,使得其(i,j)位元素为1,i≠j. CA的(i,j)位元素为c
ii
,AC的(i,j)位元素为c
jj
.于是c
ii
=c
jj
.这里的i,j是任意的,从而c
11
=c
22
=…=c
nn
.
解析
转载请注明原文地址:https://kaotiyun.com/show/ppH4777K
0
考研数学三
相关试题推荐
设α1,α2,…,αn为n个线性无关的n维向量,且与向量β正交.证明:向量β为零向量.
设向量组(I):α1,α2,…,αs的秩为r,,向量组(Ⅱ):β1,β2,…,βs的秩为r。,且向量组(Ⅱ)可由向量组(I)线性表示,则().
设f(x)在[1,2]上连续,在(1,2)内可导,且f’(x)≠0,证明:存在ξ,η,ζ∈(1,2),使得。
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),且f(a)=0.证明:存在ξ∈(a,b),使得.
设A为n阶非零矩阵,且存在自然数k,使得Ak=0.证明:A不可以对角化.
就a,b的不同取值,讨论方程组解的情况.
设A是3×4矩阵且r(A)=1,设(1,一2,1,2)T,(1,0,5,2)T,(一1,2,0,1)T,(2,一4,3,a+1)T皆为AX=0的解.(1)求常数a;(2)求方程组AX=0的通解.
求方程组的通解.
,求A的全部特征值,并证明A可以对角化.
随机试题
加强足三阴、足三阳经脉与心脏联系的是( )
Auer小体常见于
1岁女婴,诊断为营养性缺铁性贫血,给予铁剂治疗,其疗程为用药
关于行政法规的立项,下列哪一说法是正确的?(2017年卷二45题)
土地增值税的纳税人应在转让房地产合同签订后()日内,到税务机关办理纳税申报。
甲、乙、丙三个自然人共同出资设立了一个有限责任公司。根据公司法律制度的规定,下列关于该有限责任公司董事会的表述中,正确的有()。
泰山经石峪中,()为目前泰山大字之魁。
如图,已知ΘO的半径为5,点O到弦AB的距离为3,则ΘO上到弦AB所在直线的距离为2的点有()。
若f(x)的导函数是sinx,则f(x)有一个原函数为()
Bydegreestheshutterswereopened:thewindow-blindsweredrawnup,andpeoplebeganpassingtoand【C1】______.Somefewstoppe
最新回复
(
0
)