首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(I)设A是对角矩阵,并且对角线上元素两两不相等.证明和A乘积可交换的一定是对角矩阵.(2)n阶矩阵C如果和任何n阶矩阵乘积可交换,则C必是数量矩阵.
(I)设A是对角矩阵,并且对角线上元素两两不相等.证明和A乘积可交换的一定是对角矩阵.(2)n阶矩阵C如果和任何n阶矩阵乘积可交换,则C必是数量矩阵.
admin
2017-10-21
83
问题
(I)设A是对角矩阵,并且对角线上元素两两不相等.证明和A乘积可交换的一定是对角矩阵.(2)n阶矩阵C如果和任何n阶矩阵乘积可交换,则C必是数量矩阵.
选项
答案
(1)设B和A乘积可交换,要证明B是对角矩阵,即要说明B的对角线外的元素b
ij
(i≠j)都为0.设A的对角线元素为λ
1
,λ
2
,…,λ
n
则Ab的(i,j)位元素为λ
i
b
ij
而BA的(i,j)位元素为λ
j
b
ij
.因为AB=BA,得λ
i
b
ij
=λ
j
b
ij
.因为λ
i
≠λ
j
,所以b
ij
=0. (2)先说明C一定是对角矩阵.由于C与对角线上元素两两不相等的n阶对角矩阵乘积可交换,由(1)的结论得出C是对角矩阵. 再说明C的对角线元素c
11
,c
22
,…,c
nn
都相等. 构造n阶矩阵A,使得其(i,j)位元素为1,i≠j. CA的(i,j)位元素为c
ii
,AC的(i,j)位元素为c
jj
.于是c
ii
=c
jj
.这里的i,j是任意的,从而c
11
=c
22
=…=c
nn
.
解析
转载请注明原文地址:https://kaotiyun.com/show/ppH4777K
0
考研数学三
相关试题推荐
设α1,α2,…,αm,β1,β2,…,βn线性无关,而向量组α1,α2,…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
设α1,…,αn为n个m维向量,且m<n.证明:α1…,αn线性相关.
设向量组α1,α2,α3,α4线性无关,则向量组().
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:(1)存在ξ∈(a,b),使得f’(ξ)=2ξf(ξ).(2)存在η∈(a,b),使得nf’(η)+f(η)=0.
设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求.
设A,B为n阶实对称矩阵,则A与B合同的充分必要条件是().
设且A~B.(1)求a;(2)求可逆矩阵P,使得P—1AP=B.
设A=(1)若ai≠aj(i≠j),求ATX=b的解;(2)若a1=a3a≠0,a2=a4=一a,求ATX=b的通解.
设α1,α2为齐次线性方程组AX=0的基础解系,β1,β2为非齐次线性方程组AX=b的两个不同解,则方程组AX=b的通解为().
设求f’(x)并讨论其连续性.
随机试题
在PowerPoint2010中,要实现在播放时幻灯片之间的跳转,可采用的方法是_____。
轻度先天性上睑下垂行手术矫治的时间宜在
血清清蛋白明显降低可见于
关于血药浓度下列叙述不正确的是
根据热稳定条件,未考虑腐蚀时,接地装置接地极的截面不宜小于连接至该接地装置接地线截面的()。
工程项目的管理模式有()。
通过分析过去三个月内英镑对美元的汇率,得到汇率均值为1英镑=1.64美元,汇率波动标准差为250个基点。假设英镑对美元的汇率波动基本符合正态分布,则预期未来三个月中。英镑兑美元的汇率有95%的可能性处于()之间。
一天,一个外国旅游团同时入住北京一家饭店,行李进房后,一游客找到地陪说,他的行李找不到了,应在下述地方帮助寻找行李()。
Themostobviouspurposeofadvertisingistoinformtheconsumerofavailableproductsorservices.Thesecond【C1】______isto
陕西菜虽然没有名列全国的八大菜系之一,但作为千年古都、历史名城,餐饮风格自成一体,具有浓郁的地方特色。陕西饮食,凭借着历史古都的优势,挖掘继承历代宫廷美食之技艺,博采全国各地之精华,以品种繁多、地方风味各异、古色古香古韵而著称。至今很多都保留周、秦、汉、唐
最新回复
(
0
)