首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(I)设A是对角矩阵,并且对角线上元素两两不相等.证明和A乘积可交换的一定是对角矩阵.(2)n阶矩阵C如果和任何n阶矩阵乘积可交换,则C必是数量矩阵.
(I)设A是对角矩阵,并且对角线上元素两两不相等.证明和A乘积可交换的一定是对角矩阵.(2)n阶矩阵C如果和任何n阶矩阵乘积可交换,则C必是数量矩阵.
admin
2017-10-21
56
问题
(I)设A是对角矩阵,并且对角线上元素两两不相等.证明和A乘积可交换的一定是对角矩阵.(2)n阶矩阵C如果和任何n阶矩阵乘积可交换,则C必是数量矩阵.
选项
答案
(1)设B和A乘积可交换,要证明B是对角矩阵,即要说明B的对角线外的元素b
ij
(i≠j)都为0.设A的对角线元素为λ
1
,λ
2
,…,λ
n
则Ab的(i,j)位元素为λ
i
b
ij
而BA的(i,j)位元素为λ
j
b
ij
.因为AB=BA,得λ
i
b
ij
=λ
j
b
ij
.因为λ
i
≠λ
j
,所以b
ij
=0. (2)先说明C一定是对角矩阵.由于C与对角线上元素两两不相等的n阶对角矩阵乘积可交换,由(1)的结论得出C是对角矩阵. 再说明C的对角线元素c
11
,c
22
,…,c
nn
都相等. 构造n阶矩阵A,使得其(i,j)位元素为1,i≠j. CA的(i,j)位元素为c
ii
,AC的(i,j)位元素为c
jj
.于是c
ii
=c
jj
.这里的i,j是任意的,从而c
11
=c
22
=…=c
nn
.
解析
转载请注明原文地址:https://kaotiyun.com/show/ppH4777K
0
考研数学三
相关试题推荐
设A=(α1,α2,α3,α4)为4阶方阵,且AX=0的通解为X=k(1,1,2,一3)T,则α2由α1,α3,α4表示的表达式为__________.
设f(x)在[1,2]上连续,在(1,2)内可导,且f’(x)≠0,证明:存在ξ,η,ζ∈(1,2),使得。
证明不等式:xarctanx≥ln(1+x2).
设C1,C2是任意两条过原点的曲线,曲线C介于C1和C2之间,如果过C上任意一点P引平行于x轴和y轴的直线,得两块阴影所示区域A,B有相等的面积,设C的方程是y=x2,C1的方程是y=,求曲线C2的方程.
设(1)求PTCP;(2)证明:D一BA—1BT为正定矩阵.
设A=有三个线性无关的特征向量.(1)求a;(2)求A的特征向量;(3)求可逆矩阵P,使得P—1AP为对角阵.
设n阶矩阵A=(α1,α2,…,αn)的前n一1个列向量线性相关,后n一1个列向量线性无关,且α1+2α2+…+(n一1)αn—1=0,b=α1+α1+…+αn.(1)证明方程组AX=b有无穷多个解;(2)求方程组AX=b的通解.
设B≠O为三阶矩阵,且矩阵B的每个列向量为方程组的解,则k=_______,|B|=_______
,求A的全部特征值,并证明A可以对角化.
随机试题
互购贸易作为一种对销贸易,下列符合其特点的是()
某男童,9岁,近期家长发现皮肤没有光泽,毛发枯黄,脸上生癣,吃饭不好,生长发育缓慢,免疫功能下降,易生病。该症状提示男童可能缺()
下列关于造成猪肉涨价原因的描述,错误的是()。
单用户操作系统是只为某一个人使用计算机提供服务的程序。()
甲有一套商品房欲出售,经人介绍,与乙签订房屋买卖合同,丙知道后找到甲,表示愿意以更高的价格购买,甲便与丙订立合同并办理房屋过户手续。下列说法正确的是()。
阅读关于“外力作用和地表形态”的图文资料,按要求完成教学设计任务。材料一《普通高中地理课程标准(实验)》中的内容标准要求:“结合实例,分析造成地表形态变化的内外力因素。”材料二某版本教科书中关于“外力作用和地表形态”的相关内容。要求
行政相对人只能对损益性行政行为申请法律救济,而对授益性行政行为则不能申请救济。()
关于对国家机关公务员进行处分的说法,下列哪一选项是正确的?()
历史的车轮滚滚向前,我们依然________理性、良知、责任。我们认为冷静的力量,同样能让人________。冷静,代表着不被表面的喧嚣干扰,不为外界的繁华________,不被情绪裹挟,不受利益诱惑。填入划横线部分最恰当的一项是:
Theunhealthyingredientsandlownutritioncontentofthefoodcanmakeyoulessactiveandlazy,newresearchshows.Nosurpri
最新回复
(
0
)