首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
利用代换将方程y’’cosx一2y’sinx+3ycosx=ex化简,并求出原方程的通解。
利用代换将方程y’’cosx一2y’sinx+3ycosx=ex化简,并求出原方程的通解。
admin
2018-12-19
29
问题
利用代换
将方程y’’cosx一2y’sinx+3ycosx=e
x
化简,并求出原方程的通解。
选项
答案
由[*],得 y’=u’secx+usecxtanx, y’’=u’’secx+2u’secxtanx+u(sectan
2
x+sec
3
x), 代入原方程y’’cosx一2y’sinx+3ycosx=e
x
,得 u’’+4u=e
x
。 (*) 先求其相应齐次方程的通解。由于其特征方程为λ
2
+4=0,则特征方程的根为λ=±2i。所以通解为[*]=C
1
cos2x+C
2
sin2x(C
1
,C
2
为任意常数)。 再求非齐次方程的特解。设其特解为u
*
(x)=Ae
x
,代入(*)式,得 (Ae
x
)
*
+4Ae
x
=Ae
x
+4Ae
x
=5Ae
x
=e
x
, 解得A=[*],因此u
*
(x)=[*]e
x
。 故(*)的通解为 u(x)=C
1
cos2x+C
2
sin2x+[*]e
x
(C
1
,C
2
为任意常数)。 所以,原微分方程的通解为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/ptj4777K
0
考研数学二
相关试题推荐
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示.将β1,β2,β3由α1,α2,α3线性表示.
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.求AB一1.
设n阶矩阵A的伴随矩阵为A*,证明:若|A|=0,则|A*|=0;
计算二重积分其中
证明:当0<a<b<π时,bsinb+2cosb+πb<asina+2cosa+πa.
微分方程y’+ytanx=cosx的通解y=____________.
一容器的内侧是由图中曲线绕y轴旋转一周而成的曲面,该曲线由x2+y2=连接而成(如图3—7).求容器的容积;
(2000年)函数f(χ)在[0,+∞]上可导,f(0)=1,且满足等式f′(χ)+f(χ)-∫0χf(t)dt(1)求导数f′(χ);(2)证明:当χ≥0时,成立不等式:e-χ≤f(χ)≤1.
(2006年)设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Aχ=0的两个解.(Ⅰ)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A.
(2006年)设函数y=f(χ)具有二阶导数,且f′(χ)>0,f〞(χ)>0,△χ为自变量χ在点χ0处的增量,△y与dy分别为f(χ)在点χ0处对应的增量与微分,若△χ>0,则【】
随机试题
著有《工业管理与一般管理》一书的古典管理学家是()
两个相同的瓶子装满酒精溶液,一个瓶子中酒精与水的体积之比是3:1,而另一个瓶子中酒精与水的体积之比是4:1,若将两瓶酒精混合,混合液中酒精与水的体积之比为()。
一般认为,结算业务是一种()
牙槽突植骨可选用的骨源有
一般来说,通货膨胀的主要受害群体是()。
2012年A省邮政电信业务总量1812.4亿元,比上年增长14%。其中邮政业务总量153.6亿元,电信业务总量1658.8亿元,分别增长20.0%和13.4%。邮政电信业务收入737.2亿元,比上年增长7.4%。其中邮政业务收入93.3亿元,电信业务收入6
Malpractice
【B1】【B17】
A、 B、 C、 C以when开头进行提问时,应该回答“时间”,所以(C)是正确答案。(A)branchoffice意为“分公司,分店”,但此题和场所没关系。(B)because用来回答以why开头的提问,和本题不符合
MostpeoplesaythattheUSAismakingprogressinfightingAIDS,buttheydon’tknowthere’scureandstronglydisagreethat
最新回复
(
0
)