首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b—a). (2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且,则f+’(0)存在,且f+’
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b—a). (2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且,则f+’(0)存在,且f+’
admin
2016-04-08
97
问题
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b—a).
(2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且
,则f
+
’(0)存在,且f
+
’(0)=A.
选项
答案
(1)作辅助函数[*]易验证φ(x)满足:φ(a)=φ(b);φ(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且[*]根据罗尔定理,可得在(a,b)内至少有一点ξ,使φ’(ξ)=0,即[*]所以f(b)-f(a)=f’(ξ)(b一a). (2)任取x
0
∈(0,δ),则函数f(x)满足在闭区间[0,x
0
]上连续,开区间(0,x
0
)内可导,因此由拉格朗日中值定理可得,存在ξ
x0
∈(0,x
0
)c(0,δ),使得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/rZ34777K
0
考研数学二
相关试题推荐
下列命题(1)设函数g(x)在x=x0处连续,f(u)在u=u0=g(x0)处连续,则f(g(x))在x=x0处连续;(2)设函数g(x)在x=x0处连续,f(u)在u=u0=g(x0)处不连续,则f(g(x))在x=x0处不连续;
设函数f(x)=在(-∞,+∞)上连续,且f(x)=0,则().
设某容器的形状是由曲线x=g(y)在x轴上方部分绕y轴旋转而成的立体,按2tcm3/s的速率往里倒水,能够使水平面上升速度恒为cm/s,求曲线x=g(y)的函数表达式?
证明:
设.证明:当n为奇数时,f(x)有且仅有一个零点;
设函数f(x)有二阶连续导数,且f”(x)≠0,又有f(x+△x)=f(x)+△xf’(x+θ△x),0<θ<1.证明:
证明:当0<x<1时,
设f(x)在[a,b](a>0)上连续,在(a,b)内可导,f(a)=0,f(b)=2,f’(x)≠0,证明:存在ξ,η∈(a,b),使得
随机试题
男性,26岁。排柏油便2天,加重伴头晕、心慌半天急诊入院。既往无肝病史,近期无服药史。查体:BP70/40mmHg,心率120次/分,腹平软,无压痛,肝、脾肋下未触及,四肢末梢发凉。(2014年第100题)首选的处理是
当某一感官处于功能状态时,另一感官出现幻觉,此现象是
在评价未更正错报的影响时,下列说法中A注册会计师认为正确的有()。
某企业生产某种产品,品种单一,批量和生产相对稳定。利用抽样检验对产品进行验收。若根据检索要素确定的抽样方案抽取的样本中,发现不合格品数d大于接收数Re,则()。
下列关于乡村聚落和城市聚落的对比,错误的是()。
坚持社会主义初级阶段的基本经济制度,必须旗帜鲜明地反对()。
下列各项可使用通报来处理的是()。
课程设计
以下叙述中正确的是
Withoursocietyprogressingsmoothlytowardthetwenty-lustcentury,itseemsthatthestablestructureoffamilyisalsochang
最新回复
(
0
)