首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b—a). (2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且,则f+’(0)存在,且f+’
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b—a). (2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且,则f+’(0)存在,且f+’
admin
2016-04-08
61
问题
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)-f(a)=f’(ξ)(b—a).
(2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且
,则f
+
’(0)存在,且f
+
’(0)=A.
选项
答案
(1)作辅助函数[*]易验证φ(x)满足:φ(a)=φ(b);φ(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,且[*]根据罗尔定理,可得在(a,b)内至少有一点ξ,使φ’(ξ)=0,即[*]所以f(b)-f(a)=f’(ξ)(b一a). (2)任取x
0
∈(0,δ),则函数f(x)满足在闭区间[0,x
0
]上连续,开区间(0,x
0
)内可导,因此由拉格朗日中值定理可得,存在ξ
x0
∈(0,x
0
)c(0,δ),使得 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/rZ34777K
0
考研数学二
相关试题推荐
函数f(x)=ln(secx+tanx)是().
已知一抛物线过Ox轴上两点A(1,0)、B(3,0),记0≤x≤1时,抛物线与Ox轴、Oy轴围成的平面图形为S1,在1≤x≤3上抛物线与Ox轴围成的平面图形为S2.证明:S1与S2的面积相等;
证明:∫aa+2πln(2+cosx)·cosxdx>0,其中a为任意常数.
设y=f(x)在x≥0上有严格单调递增的连续导函数,且f(0)=0,它的反函数为x=g(y),证明:不等式∫0af(x)dx+∫0bdy≥ab.
设函数f(x)在[0,1]上连续,且∫01f(x)dx=0,∫01xf(x)dx=1,证明:(1)存在x1∈[0,1],使得|f(x1)|>4;(2)存在x2∈[0,1],使得|f(x2)|=4.
设函数f(x)=在(-∞,+∞)上连续,且f(x)=0,则().
设函数f(x)连续,则在下列函数中,必为偶函数的是().
若f(x),g(x)在[a,b]上连续,证明:[∫abf(x)g(x)dx]2≤∫abf2(x)dx∫abg2(x)dx(Cauchy-Schwarz不等式);
证明:当0<x<1时,
随机试题
Helentypes______.
急性糜烂性胃炎治疗不应使用
均质土坝的防渗体是()。
下列截面形状的钢筋混凝土梁中,抗弯刚度和抗扭能力大的是()。
根据《公司法》的规定,下列关于股份有限公司股份发行的表述不正确的是( )。
企业当期计提的坏账准备应该计入信用减值损失,且计提后不能转回。()
幂级数的和函数是_____.
记时器控件能有规律的以一定时间间隔触发【】事件,并执行该事件过程中的程序代码。
A、USaidprogramsin21countriesoverthenextthreeyearswillbehaltedB、USaidmissionsin21countriesoverthenextthree
A、Hesavesmuchmoneybecauseheneedn’tdrivecarortakebus.B、Hedoesn’thavetogetupontimeeveryday.C、Hecaneasilye
最新回复
(
0
)