首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=XTAX经过正交变换化为标准形f=2y12-y22-y32,又A*α=α,其中α=(1,1,-1)T. (Ⅰ)求矩阵A; (Ⅱ)求正交矩阵Q,使得经过正交变换X=QY,二次型f(x1,x2,x3)=XTAX化为标准形.
设二次型f(x1,x2,x3)=XTAX经过正交变换化为标准形f=2y12-y22-y32,又A*α=α,其中α=(1,1,-1)T. (Ⅰ)求矩阵A; (Ⅱ)求正交矩阵Q,使得经过正交变换X=QY,二次型f(x1,x2,x3)=XTAX化为标准形.
admin
2016-05-17
78
问题
设二次型f(x
1
,x
2
,x
3
)=X
T
AX经过正交变换化为标准形f=2y
1
2
-y
2
2
-y
3
2
,又A
*
α=α,其中α=(1,1,-1)
T
.
(Ⅰ)求矩阵A;
(Ⅱ)求正交矩阵Q,使得经过正交变换X=QY,二次型f(x
1
,x
2
,x
3
)=X
T
AX化为标准形.
选项
答案
(Ⅰ)显然A的特征值为λ
1
=2,λ
2
=-1,λ
3
=-1,|A|= 2,伴随矩阵A
*
的特征值为μ
1
=1,μ
2
=-2,μ
3
=-2.由A
*
α=α得AA
*
α=Aα,即Aα=2α,即α=(1,1,-1)
T
是矩阵A的对应于特征值λ
1
=2的特征向量. 令ξ=(x
1
,x
2
,x
3
)
T
为矩阵A的对应于特征值λ
2
=-1,λ
3
=-1的特征向量,因为A为实对称矩阵,所以α
T
ξ=0,即x
1
+x
2
-x
3
=0,于是λ
2
=-1,λ
3
=-1对应的线性无关的特征向量为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/PO34777K
0
考研数学二
相关试题推荐
设函数f(x)=(ex-1)(e2x-2)…(enx-n),其中n为正整数,则f’(0)=().
设方程xy=yx确定y为x的函数,求dy.
设生产某产品的固定成本为10,而当产量为x时的边际成本函数为MC=-40-20x+3x2,边际收益函数为MR=32+10x,则总利润函数L(x)=________.
求方程x2y’+xy=y2满足初始条件y|x=1=1的特解.
设有密度为u=1的均匀正方体V:0≤x≤a,0≤y≤a,0≤z≤a,设直线L过坐标原点且方向向量s的方向余弦为cosα,cosβ,cosγ,求V对L的转动惯量,并求当{cosα,cosβ,cosγ}满足什么条件时,此转动惯量有最大、最小值.
当x>0时,证明:
设直线y=ax与抛物线y=x2所围成图形的面积为S1,它们与直线x=1所围成的图形面积为S2,并且a<1.试确定a的值,使S1+S2达到最小,并求出最小值。
(2006年试题,二)设f(x,y)与φ(x,y)均为可微函数,且φ(x,y)≠0.已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是().
(2009年)设z=f(χ+y,χ-y,χy),其中,具有二阶连续偏导数,求dz与
(2001年)一个半球体状的雪堆,其体积融化的速率与半球面面积S成正比,比例常数K>0.假设在融化过程中雪堆始终保持半球体状,已知半径为r0的雪堆在开始融化的3小时内,融化了其体积的,问雪堆全部融化需要多少小时?
随机试题
男性,35岁。近半年来经常感到胸闷,有时觉前胸重压感。近1个月来觉劳力后气急来诊。体检:平卧,颈静脉明显充盈,心界增大,心音尚正常,心率98次/min,规则,无杂音。两肺阴性。肝肋下两指,肝颈回流征阳性。心超示心包中等量积液,房室大小正常。人院后给予心
下列不属于急性重型肝炎典型表现的是
根据《民事诉讼法》和民事诉讼理论,关于期间,下列哪一选项是正确的?(2011年卷三第41题)
机电工程施工现场质量控制程序一般有()。
下列不属于激励理论的是()。
教育与处罚相结合政策的基本要求为()。
设某种证件的号码由7位数字组成,每个数字可以是数字0,1,2,…,9中的任一个数字,则证件号码由7个完全不同的数字组成的概率是().
阿尔法公司从那些由于经常乘坐布拉沃航空公司的飞机而得到布拉沃航空公司奖励票券的人们那里买来一些免费旅行票券,将这些票券以低于布拉沃航空公司的机票价的价格向人们出售。这种票券的市场交易导致了布拉沃航空公司的收入损失。为抑制这种免费旅行票券的买卖行为
A、 B、 C、 A
Accordingtothepassage,thescienceofthefutureislikelytobeWhatdowelearnfromthelastparagraph?
最新回复
(
0
)