首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有一容器由平面z=0,z=1及介于它们之间的曲面S所围成.过z轴上点(0,0,z)(0≤z ≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径的圆面.若以每秒v1体积单位的均匀速度往该容器注水,并假设开始时容器是空的.
设有一容器由平面z=0,z=1及介于它们之间的曲面S所围成.过z轴上点(0,0,z)(0≤z ≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径的圆面.若以每秒v1体积单位的均匀速度往该容器注水,并假设开始时容器是空的.
admin
2019-01-25
38
问题
设有一容器由平面z=0,z=1及介于它们之间的曲面S所围成.过z轴上
点(0,0,z)(0≤z ≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径
的圆面.若以每秒v
1
体积单位的均匀速度往该容器注水,并假设开始时容器是空的.[img][/img]
写出注水过程中t时刻水面高度z=z(t)与相应的水体积V=V(t)之间的关系式,并证明水面高度z与时间t的函数关系:
选项
答案
由截面已知的立体体积公式可得t时刻容器中水面高度z(t)与体积V(t)之间的关系是 V(t)=∫
0
z(t)
S(z)dz, 其中S(z)是水面D(z)的面积,即S(z)=π[z
2
+(1一z)
2
]. 现由[*] 及z(0)=0,求z(t). 将上式两边对t求导,由复合函数求导法得 [*] 这是可分离变量的一阶微分方程,分离变量得 S(z)dz=v
0
dt,即[z
2
+(1一z)
2
]dz=[*] (*) 两边积分并注意z(0)=0,得 [*] (**)
解析
转载请注明原文地址:https://kaotiyun.com/show/pvM4777K
0
考研数学一
相关试题推荐
设曲线=1(0<a<4)与x轴、y轴所围成的图形绕x轴旋转所得立体体积为V1(a),绕y轴旋转所得立体体积为V2(a),问a为何值时,V1(a)+V2(a)最大,并求最大值.
曲线y==x4e-x2(x≥0)与x轴围成的区域面积为_________.
设A为m×n阶矩阵,且r(A)=m<n,则().
某人的食量是2500卡/天,其中1200卡/天用于基本的新陈代谢,在健身运动中,他所消耗的为16卡/千克/天乘以他的体重,假设以脂肪形式储存的热量百分之百有效,而一千克脂肪含热量10000卡,求该人体重怎样随时间变化.
设三阶实对称矩阵A的特征值为λ1=8,λ2=λ3=2,矩阵A的属于特征值λ1=8的特征向量为ξ1=,属于特征值λ2=λ3=2的特征向量为ξ2=,求属于λ2=λ3=2的另一个特征向量.
设α1,…,αm,β为m+1维向量,β=α1+…+αm(m>1).证明:若α1,…,αm线性无关,则β一α1,…,β一αm线性无关.
位于上半平面的上凹曲线y=y(x)过点(0,2),在该点处的切线水平,曲线上任一点(x,y)处的曲率与及1+y’2之积成反比,比例系数为k=,求y=y(x)·
设随机变量X,Y独立同分布,且X~N(0,σ2),再设U=aX+bY,V=aX一bY,其中a,b为不相等的常数.求:E(U),E(V),D(U),D(V),ρUV;
设f(x)二阶可导,f(0)=0,令g(x)=讨论g’(x)在x=0处的连续性.
数列极限
随机试题
在下列断定中,违反矛盾律的是()
除对原发病进行综合治疗外,治疗肺气肿、改善肺功能的重要措施为()
对发行债券的说法中不正确的是()。
下述中正确的是()。
下列各项中,属于会计工作的政府监督主体的有()。
下列各项属于影响实载率的因素有()。
让人高兴的语言往往柔和甜美,所以称之为()
联系实际,谈谈正确儿童观的内容
辐射指的是能量在空间传播的过程。下列关于辐射的说法不成立的是()。
下列选项中,属于唐朝“杂律”规定的内容有()。
最新回复
(
0
)