首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有一容器由平面z=0,z=1及介于它们之间的曲面S所围成.过z轴上点(0,0,z)(0≤z ≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径的圆面.若以每秒v1体积单位的均匀速度往该容器注水,并假设开始时容器是空的.
设有一容器由平面z=0,z=1及介于它们之间的曲面S所围成.过z轴上点(0,0,z)(0≤z ≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径的圆面.若以每秒v1体积单位的均匀速度往该容器注水,并假设开始时容器是空的.
admin
2019-01-25
37
问题
设有一容器由平面z=0,z=1及介于它们之间的曲面S所围成.过z轴上
点(0,0,z)(0≤z ≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径
的圆面.若以每秒v
1
体积单位的均匀速度往该容器注水,并假设开始时容器是空的.[img][/img]
写出注水过程中t时刻水面高度z=z(t)与相应的水体积V=V(t)之间的关系式,并证明水面高度z与时间t的函数关系:
选项
答案
由截面已知的立体体积公式可得t时刻容器中水面高度z(t)与体积V(t)之间的关系是 V(t)=∫
0
z(t)
S(z)dz, 其中S(z)是水面D(z)的面积,即S(z)=π[z
2
+(1一z)
2
]. 现由[*] 及z(0)=0,求z(t). 将上式两边对t求导,由复合函数求导法得 [*] 这是可分离变量的一阶微分方程,分离变量得 S(z)dz=v
0
dt,即[z
2
+(1一z)
2
]dz=[*] (*) 两边积分并注意z(0)=0,得 [*] (**)
解析
转载请注明原文地址:https://kaotiyun.com/show/pvM4777K
0
考研数学一
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ,η∈(a,b),使得f’(ξ)=f’(η).
设齐次线性方程组有非零解,且A=为正定矩阵,求a,并求当|X|=时XTAX的最大值.
设A为三阶矩阵,A的第一行元素为a,b,c且不全为零,又B=且AB=O,求方程组AX=0的通解.
求经过点P1(5,一4,3)和P2(一2,1,8)及直线L:与平面π:x—y+z=0交点的平面方程.
设A~B,.求可逆矩阵P,使得P-1AP=B.
设A=有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
设A=有四个线性无关的特征向量,求A的特征值与特征向量,并求A2010.
设二阶常系数非齐次线性微分方程y’’+y’+qy=Q(x)有特解y=3e-4x+x2+3x+2,则Q(x)=________,该微分方程的通解为_________.
求曲面积分x2dydz+y2dzdx,其中∑是z=x2+y2与z=x围成的曲面,取下侧.
交换二次积分的积分次序:=_________.
随机试题
根据《建设工程施工合同(示范文本)》(GF—99—0201)规定,()应按照合同约定负责施工场地及其周边环境与生态的保护工作。
下列属于财务管理风险对策的有()。
直到完成使命,他才意识到自己得了重病。
______LiuXiangfailedtocompeteinthe2008BeijingOlympicGames,heisstillaherointheeyesofourChinesepeople.
某养鸡场散养的1000只肉仔鸡,30H龄起大批鸡精神委顿,食欲减退,双翅下垂,羽毛逆立,下痢至排大量血便,1周内死亡率在30%以上。病死鸡剖检病变主要发生在()
强心苷的药理作用不包括
2006年9月20日,中国A市甲公司作为买方与作为卖方的位于意大利B市的乙公司在北京签订购买由意大利丙公司生产的钢琴1万架的合同。后来,钢琴按时运抵甲公司,但甲公司验货后发现该批钢琴质量存在严重缺根据上述案情,请回答以下问题:陷,于是甲公司要求乙公司退还相
根据《水利水电工程等级划分及洪水标准》SL252--2000,下列永久建筑物的级别可提高一级的有()。
在数据库中,建立索引的主要作用是
A、No,that’smyaunt’s.B、No,that’smymother.C、Yes,Ilovemymother.A
最新回复
(
0
)