首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组α1,α2,α3和β1,β2,β3,β4都是4维实向量,其中α1,α2,α3线性无关,每个βi都是与α1,α2,α3都正交的非零向量.则r(β1,β2,β3,β4)=
已知向量组α1,α2,α3和β1,β2,β3,β4都是4维实向量,其中α1,α2,α3线性无关,每个βi都是与α1,α2,α3都正交的非零向量.则r(β1,β2,β3,β4)=
admin
2016-07-20
70
问题
已知向量组α
1
,α
2
,α
3
和β
1
,β
2
,β
3
,β
4
都是4维实向量,其中α
1
,α
2
,α
3
线性无关,每个β
i
都是与α
1
,α
2
,α
3
都正交的非零向量.则r(β
1
,β
2
,β
3
,β
4
)=
选项
A、1.
B、2.
C、3.
D、4.
答案
A
解析
构造矩阵A=(α
1
,α
2
,α
3
),则β
i
都是与α
1
,α
2
,α
3
正交说明β
i
都是4元方程组A
T
χ=0的解.再由α
1
,α
2
,α
3
线性无关,得r(A
T
)=r(A)=3,于是A
T
χ=0的解集合的秩为1,从而r(β
1
,β
2
,β
3
,β
4
)=1.
转载请注明原文地址:https://kaotiyun.com/show/q0w4777K
0
考研数学一
相关试题推荐
已知二次型f(x1,x2,x3)=2x12+2x22+ax32+2x1x2经可逆线性变换x=Py化为g(y1,y2,y3)=y12+y22+2y2y3,则()
设A是秩为1的3阶实对称矩阵,λ1=2是A的特征值,对应特征向量为a1=(﹣1,1,1)T,则方程组Ax=0的基础解系为()
设飞机以匀速ν(ν为常数)沿垂直于x轴的方向向上飞行,飞机在(a,0)(a>0)处被发现,随即从原点(0,0)处发射导弹,导弹的速度为2ν,方向始终指向飞机,如图所示求导弹飞行轨迹y=y(x)的表达式;
行列式|A|非零的充要条件是().
求微分方程y"-y=4cosx+ex的通解.
n阶矩阵A满足A2-2A-3E=O,证明:A能相似对角化.
在区间[0,1]上函数f(x)=nx(1-x)n(n为正整数)的最大值记为M(n),则=_______.
设g(χ)二阶可导,且f(χ)=(Ⅰ)求常数a的值,使得f(χ)在χ=0处连续;(Ⅱ)求f′(χ),并讨论f′(χ)在χ=0处的连续性.
已知某产品的边际成本和边际收益函数分别为Cˊ(q)=q2-4q+6,Rˊ(q)=105—2q,固定成本为100,其中q为销售量,C(q)为总成本,R(q)为总收益,求最大利润.
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:x>20与x≤22;
随机试题
选购厨房燃气设备时首先应考虑________。
传输设备插件单元的电源电压一般为()V。
海尔集团提出的“敬业报国,追求卓越”,中国移动通信提出的“创无限通信世界,做信息社会栋梁”,可视为集团的()
R因子是
防风通圣散的功用是
根据下列材料,回答以下问题。现在有90%的人过于关注食品安全问题,对于营养的理解,大多数人还停留在“营养问题没多大危害,顶多胖点瘦点”的水平上。事实上因为营养问题导致身体健康严重恶化甚至失去生命的大有人在。随着工业化、城镇化、老龄化进程
[*]
Brandinganagecategorymightsoundlikeafrivolousexercise.Butlifestagesareprimarilysocialconstructs,andhistorysho
关于项目招投标的说法,不正确的是()。
Heneverfailedto______hisaccomplishmentsbypointingtohisbrother’seminence.
最新回复
(
0
)