首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶实对称矩阵,λ1=8,λ2=λ3=2是其特征值.已知对应λ1=8的特征向量为α1=[1,k,1]T ,对应λ2=λ3=2的一个特征向量为α2=[一1,1,0]T.试求参数k及λ2=λ3=2的一个特征向量和矩阵A.
设A为三阶实对称矩阵,λ1=8,λ2=λ3=2是其特征值.已知对应λ1=8的特征向量为α1=[1,k,1]T ,对应λ2=λ3=2的一个特征向量为α2=[一1,1,0]T.试求参数k及λ2=λ3=2的一个特征向量和矩阵A.
admin
2020-01-12
79
问题
设A为三阶实对称矩阵,λ
1
=8,λ
2
=λ
3
=2是其特征值.已知对应λ
1
=8的特征向量为α
1
=[1,k,1]
T
,对应λ
2
=λ
3
=2的一个特征向量为α
2
=[一1,1,0]
T
.试求参数k及λ
2
=λ
3
=2的一个特征向量和矩阵A.
选项
答案
因α
1
,α
2
是实对称矩阵A的属于不同特征值的特征向量,故有α
1
T
,α
2
=0,即 [*] 故有k=1,即α
1
=[1,1,1]
T
. 设λ
2
=λ
3
=2的属于A的另一特征向量为α
3
=[X
1
,X
2
,X
3
]
T
,则α
1
T
α
3
=0.为保证α
2
,α
3
线 性无关,可进一步要求α
1
T
α
3
=0,这样有 [*] 得到基础解系为 [一1/2,一1/2,1]
T
. 为方便计,取 α
3
=[1,1,一2]
T
. 再由 A[α
1
,α
2
,α
3
]=[Aα
1
,Aα
2
,Aα
3
]=[λ
1
α
1
,λ
2
α
2
,λ
3
α
3
] 得 A=[λ
1
α
1
,λ
2
α
2
,λ
3
α
3
][α
1
,α
2
,α
3
]
一1
[*]
解析
利用实对称矩阵特征向量的性质求之.
转载请注明原文地址:https://kaotiyun.com/show/qDD4777K
0
考研数学三
相关试题推荐
已知A=,矩阵X满足A*X=A-1+2X,其中A*是A的伴随矩阵,则X=___________.
级数的收敛域是________.
验收成箱包装的玻璃器皿,每箱24只装.统计资料表明,每箱最多有2只残品,且含0,1,2件残品的箱各占80%,15%,5%。现在随意抽取一箱,随意检验其中4只;若未发现残品则通过验收,否则要逐一检验并更换。试求通过验收的箱中确实无残品的概率.
求方程组的通解.
设A=(a<0),且AX=0有非零解,则A*X=0的通解为__________.
计算二重积分其中D是由直线y=x,y=1,x=0所围成的平面区域.
设总体X的概率密度为f(x)=,其中未知参数θ>0,设X1,X2,…,Xn是来自总体X的简单样本.(1)求θ的最大似然估计量;(2)该估计量是否是无偏估计量?说明理由.
设f(x)在x=a处的左右导数都存在,则f(x)在x=a处().
设α1,α2,α3,β1,β2都是4维列向量,且4阶行列式|α1,α2,α3,β1|=m,|α1,α2,β2,α3|=n,则4阶行列式|α3,α2,α1,β1+β2|等于()
设,则当x→0时,两个无穷小的关系是().
随机试题
氟喹诺酮类药物的抗菌作用机制是
虚证泄泻的特征是实证泄泻的特征是
工程项目沟通方式包括书面正式的、书面非正式的、口头正式的和口头非正式的沟通。下列关于沟通方式的说法正确的是()。
下列说法正确的是( )。
支付令是人民法院依照()规定的督促程序,根据债权人的申请,向债务人发出的限期履行给付金钱或有价证券的法律文书。
转变城乡二元结构是解决“三农”问题的重点和关键。()
国家主义派
一般不公开审判的案件是()。
From:JosieRobertsTo:KurtBowmanDate:July24Subject:Re:BoothReservationAttachment:ServicesandFacilitiesDearMr.
MostAmericansspendfarmoreoftheirleisuretimewiththemassmediathaninanyotheroccupation.Inaddition,mostofushe
最新回复
(
0
)