首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2004年试题,二)设A,B为满足AB=0的任意两个非零矩阵,则必有( ).
(2004年试题,二)设A,B为满足AB=0的任意两个非零矩阵,则必有( ).
admin
2019-07-12
49
问题
(2004年试题,二)设A,B为满足AB=0的任意两个非零矩阵,则必有( ).
选项
A、A的列向量组线性相关,B的行向量组线性相关
B、A的列向量组线性相关,B的列向量组线性相关
C、A的行向量组线性相关,B的行向量组线性相关
D、A的行向量组线性相关,B的列向量组线性相关
答案
C
解析
由题设AB=0,且A≠0,B≠0,则线性齐次方程组AX=0有非零解,则A的列向量组线性相关;同时由AB=0,知B
T
A
T
=0,且B
T
≠0,A
T
≠0,同理线性齐次方程组B
T
Y=0也有非零解,因而B的列向量组,也就是B的行向量组线性相关.综上,选A.解析二赋值法,即可设A=(1,0)B=(0,1)
T
,显然AB=0.但矩阵A的列向量组线性相关,行向量组线性无关;矩阵B的行向量组线性相关,列向量组线性无关.从而可知,正确答案为A.
AB=0常在考试中出现,与其相关的两个结论考生应记住:(1)AB=0→arA+rB
转载请注明原文地址:https://kaotiyun.com/show/qHc4777K
0
考研数学一
相关试题推荐
已知向量组与向量组等秩,则x=______.
求极限
已知随机变量(X1,X2)的概率密度为f1(x1,x2),设Y1=2X1,Y2=X2,则随机变量(Y1,Y2)的概率密度f2(y1,y2)=()
若函数z=2x2+2y2+3xy+ax+by+c在点(-2,3)处取得极小值-3,则常数a,b,c之积abc=______.
已知α1=[一1,1,a,4]T,α2=[-2,1,5,a]T,α3=[a,2,10,1]T是4阶方阵A的3个不同特征值对应的特征向量,则n的取值范围为()
已知二维随机变量(X,y)的概率分布为若随机事件{X=0)与{X+Y=1)相互独立,令U=max{X,Y),V=min{X,Y},则P{U+V=1}=()
对于任意二事件A1,A2,考虑二随机变量试证明:随机变量X1和X2独立的充分必要条件是事件A1和A2相互独立.
设f(x)可导f(0)﹦0,f’(0)﹦2,F(x)﹦∫x0t2f(x3-t2)dt,g(x)﹦,则当x→0时,F(x)是g(x)的()
设a,b,c都是不为零的常数,三元函数μ=,则当点(x,y,z)≠(0,0,0)时rot(gradμ)=_______
随机试题
下列各项中,能作为短期偿债能力辅助指标的是
原发性胆汁淤积性肝硬化最常见的早期症状为
2012年,某市受理专利申请量82682件,比上年增长3.1%。其中,发明专利37139件,增长15.5%。专利授权量51508件,增长7.4%。其中,发明专利11379件,增长24.2%。2012年全市有高新技术企业4312家,技术先进型服务企业281家
根据《企业会计准则第15号——建造合同》,下列费用中,不应计入工程成本的是()。
()接受承运人的委托,代理与船舶有关的一切业务的人。
可持续增长率可以表达为()。
养花专业户张某为防止花被偷,在花房周围私拉电网。一日晚,李某偷花不慎触电,经送医院抢救,不治身亡。张某对这种结果的主观心理态度是()。
细胞凋亡和程序性坏死的主要区别包括()。
犯罪的主观方面包括()。
Giventhechoice,youngerprofessionalsaremostinterestedinworkingattechcompanieslikeAppleandgovernmentagencieslike
最新回复
(
0
)