首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1998年试题,十)已知二次曲面方程x2+ay2+z2+2bxy+2xz+2yz=4可以经过正交变换化为椭圆柱面方程η2+4ζ2=4,求a,b的值和正交矩阵P.
(1998年试题,十)已知二次曲面方程x2+ay2+z2+2bxy+2xz+2yz=4可以经过正交变换化为椭圆柱面方程η2+4ζ2=4,求a,b的值和正交矩阵P.
admin
2013-12-27
82
问题
(1998年试题,十)已知二次曲面方程x
2
+ay
2
+z
2
+2bxy+2xz+2yz=4可以经过正交变换
化为椭圆柱面方程η
2
+4ζ
2
=4,求a,b的值和正交矩阵P.
选项
答案
设二次型为f(x,y,z)=x
2
+ay
2
+=z
2
+2bxy+2xz+2yz则相应矩阵为[*]同时该二次型的标准形为f
1
(ξ,η,ζ)=η
2
+4ζ
2
,其相应矩阵为[*]由于正交变换也是相似变换,不改变矩阵的特征值,因此λ
1
=0,λ
2
=1,λ
3
=4也是矩阵A的特征值,由特征值多项式|A—λE|=0,有[*]将λ
1
=0,λ
2
=1,λ
3
=4代入,可解得a=3且b=1.以下计算相应的特征向量以构造正交变换阵P.当λ
1
=0,有Ax=0,ξ
1
=[*]当λ
2
=1,有(A—E)x=0,ξ
2
=[*]当λ
3
=4,有(A一4I)x=0,ξ
3
=[*]从而正交变换矩阵为[*]
解析
本题在求参数a,b时,亦可利用条件∑a
ij
=∑b
ij
和|A|=|B|来求得.
转载请注明原文地址:https://kaotiyun.com/show/qR54777K
0
考研数学一
相关试题推荐
设A,B为满足AB=O的任意两个非零矩阵,则必有()
设向量组Ⅰ:α1,α2,…,αr,可由向量组Ⅱ:β1,β2…,βs线性表示,则()
设,当a,b为何值时,存在矩阵C使得AC-CA=B,并求所有的矩阵C
设矩阵且A3=0.求a的值.
如果F(x)是f(x)的一个原函数,G(x)是1/f(x)的一个原函数,且F(x)G(x)=-1,f(0)=1,求f(x)
设f(x)为偶函数,且(C为常数),记,则对任意a∈(-∞,+∞),F(-a)等于()
设f(x)二阶可导,且f’(x)>0,f”(x)>0,Δx为自变量x在点x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若Δx>0,则()
Y的概率密度函数fY(y);
设二维随机变量(X,Y)在区域b={(x,y)|1≤x≤3,1≤y≤3}上服从均匀分布,求Z=|X—Y|的概率密度fZ(z).
在投掷两枚骰子的试验中,观察两枚骰子出现的点数,写出这一试验的样本空间.记X=两枚骰子出现的点数的和,Y=两枚骰子出现的最大点数.写出随机变量X和Y作为样本空间上的函数的表达式.
随机试题
在圆x2+y2=5x内过点有n条弦,且这几条弦的长度成等差数列,设最短弦长为数列首项a1,最长弦长为末项an,若公差,那么n的取值集合为()。
卵巢肿物蒂扭转其蒂由________、________、________组成。
痛风急性发作期应禁用的药物是()。
基金清算程序是()。
甲承租乙的住房,租期未满,乙有意将该住房出售。根据合同法律制度的规定,下列表述中,正确的有()。甲公司是否取得已受领自行车的所有权?并说明理由。
中国名酒是由国家有关部门组织的评酒机构间隔一定时期经过严格的评定程序确定的,它代表了我国酿酒行业酒类产品的精华。()
下列文种经常用“会议认为”“会议指出”等惯用语的是()。
鲁迅在评《三国演义》时说:“至于写人,亦颇有失,以致欲显刘备之长厚而似伪,状诸葛之多智而近妖。”这一评语所蕴含的哲理是()。
简述我国政府职能转变的内容和措施。
TodayIwouldliketotellyouabouttheeffectsofoldageonhealth.Actuallytodayalotof【C1】______havetakenplaceinthe
最新回复
(
0
)