首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设实二次型f(x1,x2,x3)=xTAx经正交变换化成的标准形为f=2y12-y22-y32,A*是A的伴随矩阵,且向量α=[1,1,-1]T满足A*α=α,则二次型f(x1,x2,x3)=________.
设实二次型f(x1,x2,x3)=xTAx经正交变换化成的标准形为f=2y12-y22-y32,A*是A的伴随矩阵,且向量α=[1,1,-1]T满足A*α=α,则二次型f(x1,x2,x3)=________.
admin
2021-07-27
87
问题
设实二次型f(x
1
,x
2
,x
3
)=x
T
Ax经正交变换化成的标准形为f=2y
1
2
-y
2
2
-y
3
2
,A
*
是A的伴随矩阵,且向量α=[1,1,-1]
T
满足A
*
α=α,则二次型f(x
1
,x
2
,x
3
)=________.
选项
答案
2x
1
x
2
-2x
1
x
3
-2x
2
x
3
解析
由于A的特征值为2,-1,-1,所以|A|=2×(-1)×(-1)=2.A
*
α=α两端左乘A,并利用AA
*
=|A|E得Aα=2α,这表明α是A的对应于特征值2的特征向量.取α
2
=[0,1,1]
T
,α
3
=[-2,1,-1]
T
,则α
1
,α
2
,α
3
两两正交,将它们分别单位化,
所以二次型f(x
1
,x
2
,x
3
)=2x
1
2
-2x
1
x
3
-2x
2
x
3
.
转载请注明原文地址:https://kaotiyun.com/show/xQy4777K
0
考研数学二
相关试题推荐
设f(0)=0,则f(χ)在点χ=0可导的充要条件为【】
设A为n阶可逆矩阵,λ是A的一个特征值,则A的伴随矩阵A*的特征值之一是()
设A,B为n阶实对称矩阵,则A与B合同的充分必要条件是().
当A=()时,(0,1,-1)和(1,0,2)构成齐次方程组AX=0的基础解系.
设α0是A的特征向量,则α0不一定是其特征向量的矩阵是
如图,曲线段的方程为y=f(x),函数f(x)在区间[0,a]上有连续的导数,则定积∫0axf’(x)dx等于()
现有四个向量组①(1,2,3)T,(3,一1,5)T,(0,4,一2)T,(1,3,0)T;②(a,1,b,0,0)T,(c,0,d,2,0)T,(e,0,f,0,3)T;③(a,1,2,3)T,(b,1,2,3)T,(c,3,4,5)T,(d,0,
某五元齐次线性方程组的系数矩阵经初等变换,化为.则自由变量可取为(1)x4,x5.(2)x3,x5.(3)x1,x5.(4)x2,x3.那么正确的共有()
已知线性方程组(1)a,b,c满足何种关系时,方程组仅有零解?(2)a,b,c满足何种关系时,方程组有无穷多组解?并用基础解系表示全部解.
随机试题
阅读《宝黛吵架》中的一段文字,然后回答下列小题。谁知这个话传到宝玉黛玉二人耳内,他二人竟从来没有听见过“不是冤家不聚头”的这句俗话儿,如今忽然得了这句话,好似参禅的一般,都低头细嚼这句话的滋味儿,不觉的潸然泪下。虽然不曾见面,却一个在潇湘馆临风洒泪
蛋白质溶液的稳定因素是
女,63岁,脑卒中后右侧偏瘫就诊康复科,体格检查:神志清楚,言语清晰,左侧肢体活动自如。右侧上下肚肌张力增高,被动活动右上肢,在关节活动范围后50%范围内出现突然卡住,然后在关节活动范围的后50%均呈现最小的阻力;被动活动左、右下肢,在关节活动范围之末时出
能明显提高高密度脂蛋白HDL的药物是
某妇女,35岁,妊娠42周,临产10小时,检查:胎心音120次/分,宫口3cm,有水囊感,S=0,B超双顶径9cm,羊水深度2.5cm,其处理以下列哪项为最佳
建筑工地上用以拌制混合砂浆的石灰膏必须经过一定时间的陈伏,这是为了消除()的不利影响。
民事法律关系的终止,是指某类民事法律关系主体之间的权利义务不复存在,彼此丧失了( )。法律关系内容变更中,一方的权利增加,也就意味着另一方的( )。
下列物品不属于民用危险品的是()。
根据以下资料,回答以下问题。2012年1~8月,北京市开发区累计完成招商项目2730个,比上年同期增长21.5%:项目总投资,597.5亿元,同比下降13.4%;企业注册资本435.8亿元,同比下降7.7%;合同外资金额10.3亿美元,同比下降3
计算机软件可划分为系统软件和应用软件两大类,以下哪个软件系统不属于系统软件?
最新回复
(
0
)