首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×s矩阵,B是s×n矩阵,则齐次线性方程组BX=0和ABX=0是同解方程组的一个充分条件是 ( )
设A是m×s矩阵,B是s×n矩阵,则齐次线性方程组BX=0和ABX=0是同解方程组的一个充分条件是 ( )
admin
2020-03-01
68
问题
设A是m×s矩阵,B是s×n矩阵,则齐次线性方程组BX=0和ABX=0是同解方程组的一个充分条件是 ( )
选项
A、r(A)=m
B、r(A)=s
C、r(B)=s
D、r(B)=n
答案
B
解析
显然BX=0的解,必是ABX=0的解,又因r(A)=s,即A的列向量组线性无关,从而若AY=0,则必Y=0(即AY=0有唯一零解),故ABX=0必有BX=0,即ABX=0的解也是BX=0的解,故选(B),其余的均可举例说明.
转载请注明原文地址:https://kaotiyun.com/show/qRA4777K
0
考研数学二
相关试题推荐
设A=①计算行列式|A|.②实数a为什么值时方程组AX=β有无穷多解?在此时求通解.
设A为n阶正定矩阵,证明:存在唯一正定矩阵H,使得A=H2.
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1。过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
设α=(a1,2,…,an)T是Rn中的非零向量,方阵A=ααT.(1)证明:对正整数m.存在常数t.使Am=tm-1A,并求出t;(2)求一个可逆矩阵P,使P-1AP=A为对角矩阵.
曲线y=(x一1)2(x一3)2的拐点个数为
(12年)设an>0(n=1,2,…),Sn=a1+a2+…+an,则数列{Sn}有界是数列{an}收敛的
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是()
函数f(x)=(x2+x一2)|sin2π|在区间上不可导点的个数是()
设二次型f(χ1,χ2,χ3)=χ12+χ22+χ32+2aχ1χ2+2βχ2χ3+2χ1χ3经正交变换化成了标准形f=y22+2y32,其中p为正交矩阵,则α=_______,β=_______.
设f(x)是(一∞,+∞)上的连续非负函数,且f(x)∫0xf(x一t)dt=sin4x,求f(x)在区间[0,π]上的平均值.
随机试题
典型慢性硬膜外血肿的CT表现是
凌阳侯之泛滥兮,________。
近点的距离与晶状体的弹性有关。
患者的动脉血压降低,中心静脉压增高表示()。
甲公司(卖方)与乙公司订立了国际货物买卖合同,由于甲公司在履约中出现违反合同的情形,乙公司决定宣告合同无效,解除合同。依据《联合国国际货物销售合同公约》,下列哪些选项是正确的?(2010年试卷一第86题)
同一宗土地在不同估价目的下所得的评估价值也应近似。
已知三阶矩阵A的特征值为1,2,3,对应的特征向量分别为x1,x2,x3令P=(3x2,x1,2x3),则P-1AP=()。
2012年12月25日,甲公司因侵犯B企业的专利权被B企业起诉,要求赔偿200万元,至12月31日法院尚未判决。甲公司经研究认为,侵权事实成立,本诉讼败诉的可能性为70%,最可能赔偿金额为120万元,则应计入预计负债的金额为()万元。
在一个正方形内画中、小两个正方形,使三个正方形具有公共顶点,这样大正方形被分割成了正方形区域甲和L形区域乙、丙。已知三块区域甲、乙、丙的周长之比为4:5:7,并且区域丙的面积为48,大正方形的面积为()。
道德建设的核心问题,实质是()
最新回复
(
0
)