首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×s矩阵,B是s×n矩阵,则齐次线性方程组BX=0和ABX=0是同解方程组的一个充分条件是 ( )
设A是m×s矩阵,B是s×n矩阵,则齐次线性方程组BX=0和ABX=0是同解方程组的一个充分条件是 ( )
admin
2020-03-01
39
问题
设A是m×s矩阵,B是s×n矩阵,则齐次线性方程组BX=0和ABX=0是同解方程组的一个充分条件是 ( )
选项
A、r(A)=m
B、r(A)=s
C、r(B)=s
D、r(B)=n
答案
B
解析
显然BX=0的解,必是ABX=0的解,又因r(A)=s,即A的列向量组线性无关,从而若AY=0,则必Y=0(即AY=0有唯一零解),故ABX=0必有BX=0,即ABX=0的解也是BX=0的解,故选(B),其余的均可举例说明.
转载请注明原文地址:https://kaotiyun.com/show/qRA4777K
0
考研数学二
相关试题推荐
设二次型f(χ1,χ2,χ3)=(a-1)χ12+(a-1)χ22+2χ32+2χ1χ2(a>0)的秩为2.(1)求a;(2)用正交变换法化二次型为标准形.
设f(χ)在[0,1]上连续,在(0,1)内可导,且f(1)=0,证明:存在ξ∈(0,1),使得f′(ξ)sinξ+f(ξ)cosξ=0.
设A是n阶正定矩阵,证明|A+2E|>2n.
设A=有三个线性无关的特征向量.求可逆矩阵P,使得P-1AP为对角阵.
设函数f(χ,y)可微,=-f(χ,y),f(0,)=1,且=ecoty,求f(χ,y).
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η1,…ηn—r+1是它的n一r+1个线性无关的解。试证它的任一解可表示为x=k1η1+…+kn—r+1ηn—r+1,其中k1+…+kn—r+1=1。
在某国,每年有比例为p的农村居民移居城镇,有比例为q的城镇居民移居农村。假设该国总人口数不变,且上述人口迁移的规律也不变。把n年后农村人口和城镇人口占总人口的比例依次记为xn和yn(xn+yn=1)。求关系式中的矩阵A;
设函数M(χ,y)有连续二阶偏导数,满足=0,又满足下列条件:u(χ,2χ)=χ,uχ′(χ,2χ)=χ2(即uχ′(χ,y)|y=2χ=2χ2),求χχ〞(χ,2χ),uχy〞(χ,2χ),uyy〞,(χ,2χ).
设A是秩为n一1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,则Ax=0的通解必定是()
设A为3阶实对称矩阵,如果二次曲面方程在正交变换下的标准方程的图形如下图所示,则A的正特征值的个数为()
随机试题
缓刑的成立条件是()。
配电装置的安装前检查,不要求的是()。
某安装公司分包一商务楼(一至五层为商场,六至三十层为办公楼)的变配电工程,工程的主要设备(三相干式电力变压器、手车式开关柜和抽屉式配电柜)由业主采购,设备已运抵施工现场,其他设备、材料由安装公司采购。合同工期60天,并约定提前1天,奖励5万元人民币,延迟1
对会计核算软件自动产生的机内记账凭证经审核登账后,可以进行修改。()
()是指以当事人的意志为转移,能够引起劳动法律关系产生、变更和消灭,具有一定法律后果的活动。
一般应标识签发负责人姓名的文件是()。
某学生写的文献综述包括“(1)研究的缘起;(2)研究的历史发展过程;(3)研究现状”三个部分。他的文献综述缺了
设当x→0时,(1-cosx)ln(1+x2)是比xsinxn高阶的无穷小,而xsinxn是比ex2-1高阶的无穷小,则正整数n等于
A、Toregisterforawinter-vacationcourse.B、Tolookforanewplacetostay.C、Tocomplainofthewarden’scarelessness.D、To
Peoplewhohaveexperiencedidentitytheftspendmonthstryingtorepairwhatothershavedamaged,andinthemeantimetheycann
最新回复
(
0
)