首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)可导,f(x)=0,f’(0)=2,F(x)=∫0xt2f(x3-t3)dt,则当x→0时,F(x)是g(x)的( )
设f(x)可导,f(x)=0,f’(0)=2,F(x)=∫0xt2f(x3-t3)dt,则当x→0时,F(x)是g(x)的( )
admin
2019-03-14
92
问题
设f(x)可导,f(x)=0,f’(0)=2,F(x)=∫
0
x
t
2
f(x
3
-t
3
)dt,
则当x→0时,F(x)是g(x)的( )
选项
A、低阶无穷小
B、高阶无穷小
C、等价无穷小
D、同阶但非等价无穷小
答案
D
解析
先改写
其中
,则
。故选D。[img][/img]
转载请注明原文地址:https://kaotiyun.com/show/mKj4777K
0
考研数学二
相关试题推荐
设f(χ)在[0,1]连续,在(0,1)可导,f(0)=0,0<f′(χ)<1(χ∈(0,1)),求证:[∫01f(χ)dχ]2>∫01f3(χ)dχ.
设f(χ)分别满足f(χ)在χ=0邻域二阶可导,f′(0)=0,且(-1)f〞(χ)-χf′(χ)=eχ-1,则下列说法正确的是
(1)证明两个上三角矩阵A和B的乘积AB还是上三角矩阵;并且AB对角线元素就是A和B对应对角线元素的乘积.(2)证明上三角矩阵A的方幂Ak与多项式f(A)也都是上三角矩阵;并且Ak的对角线元素为a11k,a22k,…,annkf(A)的对角线元素
已知ξ1=(-3,2,0)T,ξ2=(-1,0,-2)T是方程组的两个解,则此方程组的通解是_______.
设f(x)在R上连续,且f(x)≠0,φ(x)在R上有定义,且有间断点,则下列结论中正确的个数是()①φ[f(x)]必有间断点;②[φ(x)]2必有间断点;③φ(x)]没有间断点。
若y=xex+x是微分方程y’’一2y’+ay=bx+c的解,则()
设星形线方程为(a>0).试求:1)它所围的面积;2)它的周长;3)它围成的区域绕x轴旋转而成的旋转体的体积和表面积.
设有参数方程0≤t≤π.(Ⅰ)求证该参数方程确定y=y(χ),并求定义域;(Ⅱ)讨论y=y(χ)的可导性与单调性;(Ⅲ)讨论y=y(χ)的凹凸性.
设A是任一n阶矩阵,下列交换错误的是
设k>0,讨论常数k的取值,使f(χ)=χlnχ+k在其定义域内没有零点、有一个零点及两个零点.
随机试题
无论截切平面处于什么位置,只要和球相交,球的截面只有一种情形:截面都为________。
比较准确的体现了启发性教学原则的主张是()
我国标准规定加速器的线性检定周期为
A.菌血症B.败血症C.脓毒败血症D.病毒血症E.毒血症流脑休克型
A.组织液B.血清C.血浆D.细胞内液E.细胞外液血液中除去血细胞的液体为()
男,33岁,15年前曾发现蛋白尿,一直未检查和治疗。3周前出现恶心、呕吐,查:血压140/100mmHg,轻度水肿,血肌酐360μmol/L,B超双肾缩小。下列检查项目中不应进行的是
(2017·广东)一位语文老师在执教李白的《赠汪伦》时,他是这样开讲的:“李白是我国唐代的大诗/可他上过一次大当,受过一次骗。”让学生疑团顿生,充满好奇。这位教师导入新课的方法是(
哈丁在《公地的悲剧》一书中提出“公地悲剧”的概念:一群牧民一同在一块公共草场放牧。一个牧民想多养一只羊增加个人收益,虽然他明知草场上羊的数量已经太多了,多养后将使草场的质量下降,但他不增加别人也会增加,所以,他肯定会选择多养羊获取收益,因为草场退化的代价由
对机体位置、运动状态的反映是()感觉。
下列关于对象串行化的说法错误的是
最新回复
(
0
)