首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证: (Ⅰ)存在η∈(1/2,1),使f(η)=η; (Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)-λ[f(ξ)-ξ]=1.
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证: (Ⅰ)存在η∈(1/2,1),使f(η)=η; (Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)-λ[f(ξ)-ξ]=1.
admin
2019-12-23
37
问题
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证:
(Ⅰ)存在η∈(1/2,1),使f(η)=η;
(Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f
’
(ξ)-λ[f(ξ)-ξ]=1.
选项
答案
(Ⅰ)由题设,引入辅助函数φ(x)=x-f(x),则φ(x)在[0,1]上连续, 由已知条件[*] (Ⅱ)引入辅助函数,由原函数法将所需证明的等式中的ξ改写为x, 有f
’
(x)-λ[f(x)-x]=1,即f
’
(x)-λf(x)=1-λx. 由一阶线性非齐次微分方程的通解公式得: [*] 所以[f(x)-x]e
-λx
=C,至此可令辅助函数为g(x)=[f(x)-x]e
-λx
=-φ(x)e
-λx
, 由已知条件及(I)中结论,知g(x)也是连续函数, 且g(0)=[f(0)-0]e
0
=0,g(η)=-φ(η)e
-λx
=0. 由罗尔定理知存在一点ξ∈(0,η),使得g’(ξ)=0, 又g
’
(x)=-λe
-λx
[f(x)-x]+e
-λx
[f
’
(x)-1], 所以-λ[f(ξ)-ξ]+f
’
(ξ)-1=0 此即f
’
(ξ)-λ[f(ξ)-ξ]=1,证毕.
解析
转载请注明原文地址:https://kaotiyun.com/show/qTS4777K
0
考研数学一
相关试题推荐
设点A(1,0,0),B(0,1,1),线段AB绕x轴一周所得旋转曲面为S.求旋转曲面的方程;
一质点从时间t=0开始直线运动,移动了单位距离使用了单位时间,且初速度和末速度都为零.证明:在运动过程中存在某个时刻点,其加速度绝对值不小于4.
设方程ez=y+χz+χ2+y2确定隐函数z=z(χ,y),求dz及.
判别级数的敛散性。
设A是n阶正定阵,E是n阶单位阵,证明A+E的行列式大于1.
求摆线的第一拱绕x轴旋转一周所得旋转体的体积.
设总体X的概率密度为其中θ为未知参数且大于零,X1,X2,…,Xn为取自总体X的简单随机样本。(Ⅰ)求θ的矩估计量;(Ⅱ)求θ的最大似然估计量。
求.
设A,B均是n阶矩阵,其中|A|=-2,|B|=3,|A+B|=6,则||A|B*+|B|A*|=___________.
设n为正整数,.(Ⅰ)证明对于给定的n,F(x)有且仅有一个零(实)点,并且是正的,记该零点为an;(Ⅱ)证明幂级数处条件收敛,并求该幂级数的收敛域.
随机试题
A.大黄B.酒蒸大黄C.江枳壳D.绵茵陈E.明天麻注明炮制的药物是
“五四”时期陈独秀、胡适等发表的新诗起到鼓动青年改造人生、变革社会的作用,这体现了艺术的【】
A.肝震颤B.液波震颤C.肝扩张性搏动D.肝-颈静脉回流征大量腹腔积液
以下()可以批准工程项目的监理细则应。
债权人甲认为债务人乙怠于行使其债权给自己造成损害,欲提起代位权诉讼。根据合同法律制度的规定,下列各项债权中,不得提起代位权诉讼的有()。
房地产开发项目质量控制应该做到的事项有()。
下列不属于销售费用的检查内容的是()。
在托收承付结算方式下,付款人在承付期内,可向银行提出的拒绝付款.的理由有( )。
我国现行宪法规定,中华人民共和国社会主义经济制度的基础是()。
下列关于“更名田”的说法,不正确的是()。
最新回复
(
0
)