首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证: (Ⅰ)存在η∈(1/2,1),使f(η)=η; (Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)-λ[f(ξ)-ξ]=1.
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证: (Ⅰ)存在η∈(1/2,1),使f(η)=η; (Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)-λ[f(ξ)-ξ]=1.
admin
2019-12-23
38
问题
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证:
(Ⅰ)存在η∈(1/2,1),使f(η)=η;
(Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f
’
(ξ)-λ[f(ξ)-ξ]=1.
选项
答案
(Ⅰ)由题设,引入辅助函数φ(x)=x-f(x),则φ(x)在[0,1]上连续, 由已知条件[*] (Ⅱ)引入辅助函数,由原函数法将所需证明的等式中的ξ改写为x, 有f
’
(x)-λ[f(x)-x]=1,即f
’
(x)-λf(x)=1-λx. 由一阶线性非齐次微分方程的通解公式得: [*] 所以[f(x)-x]e
-λx
=C,至此可令辅助函数为g(x)=[f(x)-x]e
-λx
=-φ(x)e
-λx
, 由已知条件及(I)中结论,知g(x)也是连续函数, 且g(0)=[f(0)-0]e
0
=0,g(η)=-φ(η)e
-λx
=0. 由罗尔定理知存在一点ξ∈(0,η),使得g’(ξ)=0, 又g
’
(x)=-λe
-λx
[f(x)-x]+e
-λx
[f
’
(x)-1], 所以-λ[f(ξ)-ξ]+f
’
(ξ)-1=0 此即f
’
(ξ)-λ[f(ξ)-ξ]=1,证毕.
解析
转载请注明原文地址:https://kaotiyun.com/show/qTS4777K
0
考研数学一
相关试题推荐
设y=f(x)的反函数为x=φ(y),利用复合函数求导法则,
设点A(1,0,0),B(0,1,1),线段AB绕x轴一周所得旋转曲面为S.求旋转曲面的方程;
求.
设A=。已知线性方程组Ax=b存在两个不同的解。(Ⅰ)求λ,a;(Ⅱ)求方程组Ax=b的通解。
已知方程组有解,证明:方程组的任意一组解必是方程(Ⅲ)b1x1+b2x2+…+bmxm=0的解.
设二维随机变量(x,y)的概率密度为F(x,y)为其分布函数,则F(1,1)-F(1,0)-F(0,1)+F(0,0)=________
“对任意给定的ε∈(0,1),总存在正整数N,当n>N时,恒有|xn-a|≤2ε”是数列{xn}收敛于a的
化为极坐标系中的累次积分为()
已知β1,β2是AX=b的两个不同的解,α1,α2是相应的齐次方程组AX=0的基础解系,k1,k2是任意常数,则AX=b的通解是()
某产品废品率为3%,采用新技术后对产品重新进行抽样检验,检查是否产品次品率显著降低,取显著性水平为0.05,则原假设为H0:_________,犯第一类错误的概率为_________.
随机试题
A.息风止痉,解毒散结,祛风止痛B.息风止痉,解毒散结,通络止痛C.两者均是D.两者均非(1995年第111,112题)白僵蚕的功效是()
肝肿瘤中“牛眼”征一般多见于
管理者发挥领导作用,主要依赖其对下属的
测量血压时袖带的正确位置是
配置2:1等张含钠液120ml需
男,35岁。右下肢疼痛1年。让其抬高右下肢80度,1分钟后下肢皮肤颜色方恢复正常。该检查结果提示
甲施工企业与乙设备租赁站订立了一年的设备书面租赁合同,合同到期后,甲继续使用并向乙缴纳租金,乙接受,则该合同()。
下列材料中,可用作膨胀缝填充材料的有()。
AlthoughmanypeoplespeakEnglish,theydon’tpronounceitorspellthewordtheyusethesameway.TheUnitedStates,in【C1】__
Somepeoplearguethatmoneyiseverything.Idon’tthinkso.WriteacompositionentitledMoneyIsNotEverything.Youshouldw
最新回复
(
0
)