首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证: (Ⅰ)存在η∈(1/2,1),使f(η)=η; (Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)-λ[f(ξ)-ξ]=1.
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证: (Ⅰ)存在η∈(1/2,1),使f(η)=η; (Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)-λ[f(ξ)-ξ]=1.
admin
2019-12-23
28
问题
设f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1,试证:
(Ⅰ)存在η∈(1/2,1),使f(η)=η;
(Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f
’
(ξ)-λ[f(ξ)-ξ]=1.
选项
答案
(Ⅰ)由题设,引入辅助函数φ(x)=x-f(x),则φ(x)在[0,1]上连续, 由已知条件[*] (Ⅱ)引入辅助函数,由原函数法将所需证明的等式中的ξ改写为x, 有f
’
(x)-λ[f(x)-x]=1,即f
’
(x)-λf(x)=1-λx. 由一阶线性非齐次微分方程的通解公式得: [*] 所以[f(x)-x]e
-λx
=C,至此可令辅助函数为g(x)=[f(x)-x]e
-λx
=-φ(x)e
-λx
, 由已知条件及(I)中结论,知g(x)也是连续函数, 且g(0)=[f(0)-0]e
0
=0,g(η)=-φ(η)e
-λx
=0. 由罗尔定理知存在一点ξ∈(0,η),使得g’(ξ)=0, 又g
’
(x)=-λe
-λx
[f(x)-x]+e
-λx
[f
’
(x)-1], 所以-λ[f(ξ)-ξ]+f
’
(ξ)-1=0 此即f
’
(ξ)-λ[f(ξ)-ξ]=1,证毕.
解析
转载请注明原文地址:https://kaotiyun.com/show/qTS4777K
0
考研数学一
相关试题推荐
设y=f(x)的反函数为x=φ(y),利用复合函数求导法则,
一质点从时间t=0开始直线运动,移动了单位距离使用了单位时间,且初速度和末速度都为零.证明:在运动过程中存在某个时刻点,其加速度绝对值不小于4.
设二元函数f(x,y)=|x—y|φ(x,y),其中φ(x,y)在点(0,0)处的某邻域内连续.证明:函数f(x,y)在点(0,0)处可微的充分必要条件是φ(0,0)=0.
设某种零件的长度L~N(18,4),从一大批这种零件中随机取出10件,求这10件中长度在16~22之间的零件数X的概率分布、数学期望和方差.
对三台仪器进行检验,各台仪器产生故障的概率分别为p1,p2,p3,求产生故障仪器的台数X的数学期望和方差.
直线L:,在yOz平面上的投影直线l绕z轴旋转一周生成的旋转曲面的方程为_________.
已知A是3阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ2,ξ3=-2对应的特征向量为ξ3.(Ⅰ)问ξ1+ξ2是否是A的特征向量?说明理由;(Ⅱ)ξ2+ξ3是否是A的特征向量?说明理由;(Ⅲ)证明:A2是数量阵.
设L为曲线:则I=∫L(x2+3y+3z)ds=______.
函数f(x,y)=exy在点(0,1)处带皮亚诺余项的二阶泰勒公式是()
设常数α>2,则级数
随机试题
利华食品有限公司由甲、乙、丙、丁四个股东出资设立,注册资本10万元,公司登记机关于2006年1月10日签发公司营业执照。根据公司法的规定回答以下问题:公司不设董事会和监事会,甲为执行董事,丁为临事。如果甲的出资为5万元,丁的出资为4万元,丙和乙的出资各
99mTc标记红细胞消化道出血显像可以探测到出血率低达______的出血部位
西河柳的别名有()
居所地在甲区而户籍地在乙区的公民,被所在地为丙区的公安局收容审查。该公民对此不服而直接起诉于某法院()。
2014年第一季度,甲商业银行有关业务及收支情况如下:(1)取得一般贷款业务利息收入570万元,支付存款利息380万元。(2)取得债券转让收入2000万元,该债券的买人价位1800万元,证券公司取得佣金1.4万元。(3)取得咨询收入30万元,出纳长款
工资制度总体设计的前期工作包括()。(2007年11月二级真题)
给定资料1.“一个好媳妇,三代好子孙。”媳妇好不好,上台夸夸就知道。每年春天,X市Y区各个乡镇社区都要举行“夸媳妇比赛”。瑞霞是张庄村的年轻媳妇。五年前,刚进婆家门,她就承担起操持家务、照顾卧病在床的婆婆的重任。一日三餐按时将可口的饭菜端到全家
持续不断的“救火”,解决现场中出现的紧急问题,这意味着管理者应该开始着手考虑______了。
本当は好きな________、冷たい態度を取る。
HintsandTipstoSaveMoneyA)Spendless.Thisisnotoversimplifyingthebestwaytosavemoney!Itisessentialifyoua
最新回复
(
0
)