首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=-2为A的一个特征值。其对应的特征向量为α3,下列向量中是A的特征向量的是( ).
设A为三阶矩阵,方程组AX=0的基础解系为α1,α2,又λ=-2为A的一个特征值。其对应的特征向量为α3,下列向量中是A的特征向量的是( ).
admin
2021-11-15
69
问题
设A为三阶矩阵,方程组AX=0的基础解系为α
1
,α
2
,又λ=-2为A的一个特征值。其对应的特征向量为α
3
,下列向量中是A的特征向量的是( ).
选项
A、α
1
+α
3
B、3α
3
-α
1
C、α
1
+2α
2
+3α
3
D、2α
1
-3α
2
答案
D
解析
因为AX=0有非零解,所以r(A)<n,故0为矩阵A的特征值,α
1
,α
2
为特征值0所对应的线性无关的特征向量,显然特征值0为二重特征值,若α
1
+α
3
为属于特征值λ
0
的特征向量,则有A(α
1
+α
3
)=λ
0
(α
1
+α
3
),注意到A(α
1
+α
3
)-0α
1
-2α
3
=-2α
3
,
故-2α
3
=λ
0
(α
1
+α
3
)或λ
0
α
1
+(λ
0
+2)α
3
=0,
因为α
1
,α
3
线性无关,所以有λ
0
=0,λ
0
+2=0,矛盾,故α
1
+α
3
不是特征向量,同理可证3α
3
-α
1
及α
1
+2α
2
+3α
3
也不是特征向量,显然2α
1
-3α
2
为特征值0对应的特征向量,选(D).
转载请注明原文地址:https://kaotiyun.com/show/qey4777K
0
考研数学二
相关试题推荐
设f(x)在[a,b]上连续可导,且f(a)=0,证明:.
设函数f(x)在[0,+∞)内可导,f(0)=1,且f’(x)+f(x)-=0.证明:当x≥0时,e-x≤f(x)≤1.
设f(x)是连续函数。若|f(x)|≤k,证明:当x﹥0时,有|y(x)|≤.
设f(x,y),g(x,y)在平面区域D上连续,且g(x,y)≥0,证明:存在(ε,η)∈D,使得.
证明线性方程组有解的充分必要条件是方程组是同解方程组。
设(I)a1,a2,a3,a4为四元非齐次线性方程组BX=b的四个解,其中,r(B)=2.求方程组(I)的基础解系。
设A是正交矩阵,且|A|<0,证明:|E+A|=0.
设a1,a2,Β1,Β2为三维列向量组,且a1,a2与Β1,Β1都线性无关。设,求出可由两组向量同时线性表示的向量。
设A是三阶矩阵,a1,a2,a3为三个三维线性无关的列向量,且满足Aa1=a2+a3,Aa2=a1+a3,Aa3=a1+a2.判断矩阵A可否对角化。
设A为三阶实对称矩阵,a1=(a,-a,1)T是方程组AX=0的解,a2=(a,1,1-a)T是方程组(A+E)X=0的解,则a=______.
随机试题
某区将体育馆装修改建成娱乐中心对外营业,根据我国《环境噪声污染防治法》的规定,该娱乐中心发出的噪声属于【】
__________和__________是一种以创造或扩展谈判的可能性协议空间,从而寻求增大谈判力的能力。
孕妇感染风疹病毒早期诊断常用的诊断方法有
二级公路土方路基路床压实度规定值为()。
在一定温度下,下列反应的Kp与Kc之间的关系正确的是()。
合理确定建设工程项目投资的基础是()。
一般资料:求助者,女性,17岁,高中二年级学生。案例介绍:求助者上中学后不知什么原因出现了挤眼睛的习惯,受到父母亲的训斥。自己也认为一个女孩子挤眉弄眼很不好,但做了很多努力,没有明显效果,主动前来寻求帮助。下面是咨询师与求助者之间的一段
(2017·山西)儿童自我意识与自我教育能力的发展大致从自我为中心发展到“自律”,再从“自律”发展到“他律”。()
某班同学要订A、B、C、D四种学习报,每人至少订一种,最多订四种,那么每个同学有多少种不同的订报方式?()
Amongalltheanimals,theapeismostlikehumanbeings.Bothpeopleandapeshavethesimilarbrainstructure,thesimilarner
最新回复
(
0
)