首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶方阵,且A+E与A—E均可逆,则下列等式中不成立的是( )
设A为n阶方阵,且A+E与A—E均可逆,则下列等式中不成立的是( )
admin
2019-05-17
38
问题
设A为n阶方阵,且A+E与A—E均可逆,则下列等式中不成立的是( )
选项
A、(A+E)
2
(A—E)=(A—E)(A+E)
2
。
B、(A+E)
-1
(A—E)=(A—E)(A+E)
-1
。
C、(A+E)
T
(A—E)=(A—E)(A+E)
T
。
D、(A+E)(A—E)
*
=(A—E)
*
(A+E)。
答案
C
解析
由A与E可交换可得,A+E与A—E可交换,进而(A+E)
2
与A—E也可交换,故选项A正确。
显然,(A—E)(A+E)=(A+E)(A—E)。若在等式两边同时左、右乘(A+E)
-1
,可得
(A+E)
-1
(A—E)=(A—E)(A+E)
-1
;若先在等式两边同时左、右乘(A—E)
-1
,可得(A+E)(A—E)
-1
=(A—E)
-1
(A+E),再在所得的等式两边同时乘以|A—E|,即得(A+E)(A—E)
*
=(A—E)
*
(A+E)。故选项B,D正确。
事实上,只有当A
T
A=AA
T
时,(A+E)
T
(A—E)=(A—E)(A+E)
T
才成立。而A
T
A=AA
T
不一定成立。例如:取
,可见A
T
A≠AA
T
。所以选C。
转载请注明原文地址:https://kaotiyun.com/show/qgV4777K
0
考研数学二
相关试题推荐
设λ1,λ2,λ3是三阶矩阵A的三个不同特征值,α1,α2,α3分别是属于特征值λ1,λ2,λ3的特征向量,若α1,A(α1+α2),A2(α1+α2+α3)线性无关,则λ1,λ2,λ3满足_______.
设A为n阶矩阵,下列结论正确的是().
设A=,B≠O为三阶矩阵,且BA=O,则r(B)=_______.
设y=且f’(x)=arctanx2,则=________.
设矩阵则A与B()
下列条件不能保证n阶实对称阵A正定的是()
计算,其中D是由x2+y2=4与x2+(y+1)2=1围成的区域.
求曲线y=3-|χ2-1|与χ轴围成的封闭区域绕直线y=3旋转所得的旋转体的
求下列积分:
设A为n阶方阵,且n≥2。证明:|A*|=|(一A)*|。
随机试题
中压废热锅炉的蒸汽压力为()。
A.机械性刺激敏感B.突发性电击样痛C.定点性咀嚼剧痛D.疼痛不定位,夜间加重E.刺痛人洞引起疼痛下述疾病可能出现的疼痛描述正确的是深龋
赵某与罗某系邻居。两人因日常小事纠纷不断。某日,两人又起纠纷,争吵中罗某抄起木棍,打在赵某头上,致使其严重脑震荡,左耳失聪,赵某因此受重伤而向公安机关报案。公安机关认为本案系邻里纠纷,以民事调解为宜,不予立案。赵某即将本案诉至人民法院。下列选项中,哪一项不
当电梯轿厢使用玻璃轿壁时,必须安装()高度的扶手。
你认为最重要的样品是()
环境创设中,幼儿与教师共同合作,共同参与,符合幼儿环境创设的()原则。
森林效应:一棵树如果单独生长在一个地方,往往比较矮小、畸形,而当众多树木生长在一起、,共用水源的时候,往往能长得郁郁葱葱。请问“森林效应”对你有什么启示?
长期以来,我国城市管理执法体制弊端多多,部门林立,各管一摊。管市容的不管破坏绿化的,管破坏绿化的不管违章建设,管违章建设的不管街头无照摆摊……而许多违法问题的处理又常常涉及几个执法部门。比如,对于马路市场,工商、交通、市容等执法部门都可以管,叉都可以不管。
用来控制、指挥和协调计算机各部件工作的是()。
HIV&AIDS[A]AIDShasnowsurpassedtheBlackDeathonitscoursetobecometheworstpandemicinhumanhistory.Attheendof
最新回复
(
0
)