首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶方阵,且A+E与A—E均可逆,则下列等式中不成立的是( )
设A为n阶方阵,且A+E与A—E均可逆,则下列等式中不成立的是( )
admin
2019-05-17
27
问题
设A为n阶方阵,且A+E与A—E均可逆,则下列等式中不成立的是( )
选项
A、(A+E)
2
(A—E)=(A—E)(A+E)
2
。
B、(A+E)
-1
(A—E)=(A—E)(A+E)
-1
。
C、(A+E)
T
(A—E)=(A—E)(A+E)
T
。
D、(A+E)(A—E)
*
=(A—E)
*
(A+E)。
答案
C
解析
由A与E可交换可得,A+E与A—E可交换,进而(A+E)
2
与A—E也可交换,故选项A正确。
显然,(A—E)(A+E)=(A+E)(A—E)。若在等式两边同时左、右乘(A+E)
-1
,可得
(A+E)
-1
(A—E)=(A—E)(A+E)
-1
;若先在等式两边同时左、右乘(A—E)
-1
,可得(A+E)(A—E)
-1
=(A—E)
-1
(A+E),再在所得的等式两边同时乘以|A—E|,即得(A+E)(A—E)
*
=(A—E)
*
(A+E)。故选项B,D正确。
事实上,只有当A
T
A=AA
T
时,(A+E)
T
(A—E)=(A—E)(A+E)
T
才成立。而A
T
A=AA
T
不一定成立。例如:取
,可见A
T
A≠AA
T
。所以选C。
转载请注明原文地址:https://kaotiyun.com/show/qgV4777K
0
考研数学二
相关试题推荐
设矩阵A=可逆,α=为A*对应的特征向量.(1)求a,b及α对应的A*的特征值;(2)判断A可否对角化.
设三阶矩阵已知Aα和α线性相关,则a=______.
设A=(aij)3×3是实正交矩阵,且A11=1,b=(1,0,0)T,则线性方程组Ax=b的解是________.
如图3—1,曲线段的方程为y=f(x),函数f(x)在区间[0,a]上有连续的导数,则定积分∫0axf’(x)dx等于()
求z=x2-2y2+2x+4在区域x2+4y2≤4上的最小值和最大值.
计算不定积分
把f(x,y)dxdy写成极坐标的累次积分,其中D={(x,y)|0≤x≤1,0≤y≤x}.
已知y1(x)和y2(x)是方程y’+p(x)y=0的两个不同的特解,则方程的通解为()
设A,B均为n阶矩阵,A可逆,且A~B,则下列命题中①AB~BA;②A2~B2;③AT~BT;④A-1~B-1。正确的个数为()
设f(χ)在χ=0的某邻域内连续,若=2,则f(χ)在χ=0处().
随机试题
北洋军阀政府于1914年成立的行政弹劾机关是()
CCMD-3是采用了哪一种分类
溶脲脲原体是
下颌第一前磨牙的特征是()
配筋砌体工程钢筋的品种、规格和数量应符合设计要求。()
在合同履行过程中,错误的说法是( )。
随着家庭成员年年龄的增大,叶先生急需为自己的家庭作一个理财计划,假如你接到了这个客户的要求,经过初步沟通面谈后,获得了以下家庭、职业与财务信息:一、家庭成员状况四、保险情况叶先生和叶太太拥有社保,儿子叶明保额为2万元的寿险。五、理财目标1.为儿
关于可行域,下列描述正确的有()。
随前动作
马斯洛人格理论的中心是动机理论,也就是_____________。
最新回复
(
0
)