首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是5×4矩阵,A=(η1,η2,η3,η4),若η1=(1,1,-2,1)T,η2=(0,1,0,1)T是AX=0的基础解系,则A的列向量组的极大线性无关组可以是
设A是5×4矩阵,A=(η1,η2,η3,η4),若η1=(1,1,-2,1)T,η2=(0,1,0,1)T是AX=0的基础解系,则A的列向量组的极大线性无关组可以是
admin
2019-08-12
50
问题
设A是5×4矩阵,A=(η
1
,η
2
,η
3
,η
4
),若η
1
=(1,1,-2,1)
T
,η
2
=(0,1,0,1)
T
是AX=0的基础解系,则A的列向量组的极大线性无关组可以是
选项
A、α
1
,α
3
.
B、α
2
,α
4
.
C、α
2
,α
3
.
D、α
1
,α
2
,α
4
.
答案
C
解析
由Aη
1
=0,知α
1
+α
2
-2α
3
+α
4
=0. ①
由Aη
2
=0,知α
2
+α
4
=0. ②
因为n-r(A)=2,故必有r(A)=2.所以可排除D.
由②知,α
2
,α
4
线性相关.故应排除B.
把②代入①得α
1
-2α
3
=0,即α
1
,α
3
线性相关,排除A.
如果α
2
,α
3
线性相关,则r(α
1
,α
2
,α
3
,α
4
)=r(-2α
3
,α
2
,α
3
,-α
2
)=r(α
2
,α
3
)=1与r(A)=2相矛盾.所以选C.
转载请注明原文地址:https://kaotiyun.com/show/qiN4777K
0
考研数学二
相关试题推荐
设有一正椭圆柱体,其底面的长、短轴分别为2a,2b,用过此柱体底面的短轴且与底面成α角的平面截此柱体,得一楔形体(如图1.3—2),求此楔形体的体积V.
已知ξ1,ξ2是方程(λE—g)X=0的两个不同的解向量,则下列向量中必是A的对应于特征值λ的特征向量的是()
分段函数一定不是初等函数,若正确,试证之;若不正确,试说明它们之间的关系.
设a0,a1,…,an-1为n个实数,方阵若λ是A是一个特征值,证明α=[1,λ,λ2,…,λn-1]T是A的对应于λ的特征向量;
0显然积分难以积出.考虑积分中值定理,其中ξx介于x,x+a之间.所以
求微分方程y"一2y’一e2x=0满足条件y(0)=1,y’(0)=1的特解.
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有四个命题:①若Ax=0的解均是Bx=0的解,则r(A)≥r(B);②若r(A)≥r(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则r(A)=r(B);④若r(
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak—1α≠0。证明向量组α,Aα,…,Ak—1α是线性无关的。
设当x→x0时,f(x)不是无穷大,则下述结论正确的是()
设随机变量X与Y相互独立,且X在区间(0,1)上服从均匀分布,Y的概率分布为P{Y=0}=P{Y=1}=P{Y=2}=,记FZ(z)=的分布函数,则函数FZ(z)的间断点的个数为()
随机试题
下列哪种炎性介质不具有阳性趋化作用
若函数y=f(x)在x=x0处取得极值,则fˊ(x0)______.
患儿女,10个月。奶粉喂养,未加任何辅食。近2个月来食欲差、面色苍白,精神不振,体重6.0kg,皮下脂肪0.3cm。患儿的首优护理诊断是
临时存款账户应根据有关开户证明文件确定的期限或存款人的需要确定其有效期限,最长不得超过()。
根据技术来源的不同,可将企业的技术创新战略分为()。
胆汁主要是对()进行消化和吸收。
武术:拳击
中国的网络文化市场在国际上有着巨大的吸引力,尤其在年轻、时尚、流行的消费层面上,其市场潜力是举世瞩目的。网络不仅把人类带进一个新的传播时代,而且把人类带进一个新的经济时代,在众多与网络相关的新兴产业中,网络文化产业是其中最富有生机和最引人注目的一部分。这
舒曼的音乐评论。
Therewasabigholeintheroadwhich____________(耽搁了路上交通).
最新回复
(
0
)