首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,∫01f(x)dx=0,g(x)在[0,1]上有连续的导数,且在(0,1)内g’(x)≠0,∫01f(x)g(x)dx=0,试证:至少存在两个不同的点ξ1,ξ2∈(0,1),使得f(ξ)=f(ξ)=0.
设f(x)在[0,1]上连续,∫01f(x)dx=0,g(x)在[0,1]上有连续的导数,且在(0,1)内g’(x)≠0,∫01f(x)g(x)dx=0,试证:至少存在两个不同的点ξ1,ξ2∈(0,1),使得f(ξ)=f(ξ)=0.
admin
2017-07-26
70
问题
设f(x)在[0,1]上连续,∫
0
1
f(x)dx=0,g(x)在[0,1]上有连续的导数,且在(0,1)内g’(x)≠0,∫
0
1
f(x)g(x)dx=0,试证:至少存在两个不同的点ξ
1
,ξ
2
∈(0,1),使得f(ξ)=f(ξ)=0.
选项
答案
令F(x)=∫
0
x
f(t)dt,则F(0)=F(1)=0. 又 0=∫
0
1
f(x)g(x)dx=∫
0
1
g(x)F(x)|
0
1
一∫
0
1
F(x)g’(x)dx =一∫
0
1
F(x)g’(x)dx, 即有∫
0
1
F(x)g’(x)dx=0, 由积分中值定理,存在点ξ∈(0,1),使得F(ξ)g’(ξ)=0,由g’(x)≠0知 F(ξ)=0,0<ξ<1. 即F(0)=F(ξ)=F(1)=0, 由洛尔定理,存在点ξ
1
∈(0,ξ),ξ
2
∈(ξ,1),使得 F’(ξ
1
)=F’(ξ
2
)=0, 即f(ξ
1
)=f(ξ
2
)=0.
解析
在f(x)连续的条件下,欲证f(x)存在两个零点f(ξ
1
)=0,f(ξ
2
)=0,可构造辅助函数F(x)=I f(t)dt,用洛尔定理证明.因已知F(0)=F(1)=0.于是,问题的关键是再找一点ξ,使F(ξ)=0,这样的点ξ可由已知条件得到.
转载请注明原文地址:https://kaotiyun.com/show/quH4777K
0
考研数学三
相关试题推荐
设A,B是二随机事件;随机变量试证明随机变量X和Y不相关的充分必要条件是A与B相互独立.
设A是n阶反对称矩阵,证明:A可逆的必要条件是n为偶数;当n为奇数时,A*是对称矩阵;
设中与A等价的矩阵有()个.
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,证明:(I)存在εi∈(a,b),使得f(εi)=f〞(εi)(i=1,2);(Ⅱ)存在η∈(a,b),使得f(η)=f〞(η).
设,则函数在原点处偏导数存在的情况是().
设A为n阶非零矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,当A*=AT时,证明丨A丨≠0.
设f(x)连续,(A为常数),求φ’(x)并讨论φ’(x)在x=0处的连续性.
设函数f(r)当r>0时具有二阶连续导数,令,则当x,y,z与t不全为零时=
设函数y(x)在(一∞,+∞)内有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.(I)试将x=x(y)所满足的方程变换成y=y(x)所满足的微分方程;(II)求解变换后的微分方程的通解.
随机试题
论述债权让与的效力。
试述糖皮质激素的适应证。
前列腺囊肿的超声表现是
A、具有二氢吡啶结构的钙通道阻滞药B、中效的镇静催眠药C、第一个开发的钙拮抗药D、适用于急性心肌梗死、洋地黄中毒等所致室性心律失常E、血管紧张素转化酶抑制药维拉帕米
Burkitt淋巴瘤与下列哪种感染有关
患者,女,5l岁。缺失,医师设计环形卡环,RPI卡环组,的近中邻面设计邻面板,腭侧前、后、侧连接杆连接,不修复。医师基预取印模灌注工作模型后交技术室制作该义齿支架该支架韵后腭杆最佳厚度为
7个月大男婴,出生时唇部腭部裂开,一直未治疗,现来我院,查体见患者双侧红唇至鼻底完全裂开,双侧鼻翼塌陷明显,口内见左侧牙槽突部分裂开,腭部无裂隙。患儿唇部畸形修复最佳时间是
甲的汇票遗失,向法院申请公示催告。公告期满后无人申报权利,甲申请法院作出了除权判决。后乙主张对该票据享有票据权利,只是因为客观原因而没能在判决前向法院申报权利。乙可以采取哪种法律对策?()
根据2009年1月1日开始施行的《增值税暂行条例实施细则》,下列关于增值税纳税义务的发生时间,表述正确的有()。
税收的基本特征有()。
最新回复
(
0
)