首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,∫01f(x)dx=0,g(x)在[0,1]上有连续的导数,且在(0,1)内g’(x)≠0,∫01f(x)g(x)dx=0,试证:至少存在两个不同的点ξ1,ξ2∈(0,1),使得f(ξ)=f(ξ)=0.
设f(x)在[0,1]上连续,∫01f(x)dx=0,g(x)在[0,1]上有连续的导数,且在(0,1)内g’(x)≠0,∫01f(x)g(x)dx=0,试证:至少存在两个不同的点ξ1,ξ2∈(0,1),使得f(ξ)=f(ξ)=0.
admin
2017-07-26
59
问题
设f(x)在[0,1]上连续,∫
0
1
f(x)dx=0,g(x)在[0,1]上有连续的导数,且在(0,1)内g’(x)≠0,∫
0
1
f(x)g(x)dx=0,试证:至少存在两个不同的点ξ
1
,ξ
2
∈(0,1),使得f(ξ)=f(ξ)=0.
选项
答案
令F(x)=∫
0
x
f(t)dt,则F(0)=F(1)=0. 又 0=∫
0
1
f(x)g(x)dx=∫
0
1
g(x)F(x)|
0
1
一∫
0
1
F(x)g’(x)dx =一∫
0
1
F(x)g’(x)dx, 即有∫
0
1
F(x)g’(x)dx=0, 由积分中值定理,存在点ξ∈(0,1),使得F(ξ)g’(ξ)=0,由g’(x)≠0知 F(ξ)=0,0<ξ<1. 即F(0)=F(ξ)=F(1)=0, 由洛尔定理,存在点ξ
1
∈(0,ξ),ξ
2
∈(ξ,1),使得 F’(ξ
1
)=F’(ξ
2
)=0, 即f(ξ
1
)=f(ξ
2
)=0.
解析
在f(x)连续的条件下,欲证f(x)存在两个零点f(ξ
1
)=0,f(ξ
2
)=0,可构造辅助函数F(x)=I f(t)dt,用洛尔定理证明.因已知F(0)=F(1)=0.于是,问题的关键是再找一点ξ,使F(ξ)=0,这样的点ξ可由已知条件得到.
转载请注明原文地址:https://kaotiyun.com/show/quH4777K
0
考研数学三
相关试题推荐
若f(x)不变号,且曲线y=f(x)在点(1,1)处的曲率圆为x2+y2=2,则函数f(x)在区间(1,2)内
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,证明:(I)存在εi∈(a,b),使得f(εi)=f〞(εi)(i=1,2);(Ⅱ)存在η∈(a,b),使得f(η)=f〞(η).
向量组a1,a2,…,as线性无关的充分条件是().
设A是m×n矩阵,则下列4个命题①若r(A)=m,则非齐次线性方程组Ax=b必有解;②若r(A)=m,则齐次方程组Ax=0只有零解;③若r(A)=n,则非齐次线性方程组Ax=b有唯一解;④若r(A)=n,则齐次方程组Ax=0只有零解中正确的是
设二次型f(x1,x2,x3)=5x12+ax22+3x32一2x1x2+6x1x3-6x2x3的矩阵合同于(Ⅰ)求常数a;(Ⅱ)用正交变换法化二次型f(x1,x2,x3)为标准形.
设函数y(x)在(一∞,+∞)内有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.(I)试将x=x(y)所满足的方程变换成y=y(x)所满足的微分方程;(II)求解变换后的微分方程的通解.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:(1)存在ξ∈(a,b),使得f’(ξ)=2ξf(ξ).(2)存在η∈(a,b),使得nf’(η)+f(η)=0.
设X1,X2,…,Xn是取自均匀分布在[0,θ]上的一个样本,试证:Tn=max{X1,X2,…,Xn}是θ的相合估计.
若f(x)=,试证:f’(0)=0.
随机试题
关于反竞争性抑制剂的正确阐述是
纵隔疾病首选的影像学检查方法是
某幢写字楼,土堆面积4000m2,总建筑面积为9000m2,建成于1990年10月1日,土地使用权年限为1995年10月1日——2035年10月1日,土地使用权出让合同中未约定到期后不可续期。现在获得类似的40余年土地使用权价格为2000元/m2,建筑物重
有一列500m火车正在运行。若距铁路中心线600m处测得声压级为70dB,距铁路中心线1200m处有居民楼,则该居民楼的声压级是()dB。
()是确定利害关系者对于交流和沟通的要求——谁需要信息,需要什么样的信息,何时需要信息以及应怎样将信息传递到他们手中。
沥青路面检测中除平整度、纵断高程、厚度外,还应检测()。
契约型基金筹集的资金属于()。
以下()策略不是按营销渠道模式分类。
简述幼儿口语表达能力的发展特点。(山西)
AloeVitaminHandCreamArichyetlightweightnon-greasytexturethatactslikeagloveprovidingprotectionagainstharmfu
最新回复
(
0
)