首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x),g(x)在[a,+∞)上二阶可导,且满足条件f(a)=g(a),f’(a)=g’(a),f’’(x)>g’’(x)(x>a).证明:当x>a时,f(x)>g(x).
设函数f(x),g(x)在[a,+∞)上二阶可导,且满足条件f(a)=g(a),f’(a)=g’(a),f’’(x)>g’’(x)(x>a).证明:当x>a时,f(x)>g(x).
admin
2017-12-31
70
问题
设函数f(x),g(x)在[a,+∞)上二阶可导,且满足条件f(a)=g(a),f’(a)=g’(a),f’’(x)>g’’(x)(x>a).证明:当x>a时,f(x)>g(x).
选项
答案
令φ(x)=f(x)-g(x),显然φ(a)=φ’(a)=0,φ’’(x)>0(x>a). [*]得φ’(x)>0(x>a); [*]得φ(x)>0(x>a),即f(x)>g(x).
解析
转载请注明原文地址:https://kaotiyun.com/show/qxX4777K
0
考研数学三
相关试题推荐
设齐次线性方程组其中a≠0,b≠0,n≥2.试讨论a,b为何值时,方程组仅有零解、有无穷多组解?在有无穷多组解时,求出全部解,并用基础解系表示全部解。
设A是m×n矩阵,B是n×m矩阵,则线性方程组(AB)x=0
参数p、t各取何值时,方程组有解、无解;当有解时,试用其导出组的基础解系表示通解。
设矩阵A=(aij)n×n的秩为n,aij的代数余子式为Aij(i,j=1,2,…,n)。记A的前r行组成的r×n矩阵为B,证明:向量组是齐次线性方程组Bx=0的基础解系。
设X=(xij)3×3,问a、b、c各取何值时,矩阵方程AX=B有解?并在有解时,求出全部解。
设随机变量X在区间(一1,1)上服从均匀分布,Y=X2,求(X,Y)的协方差矩阵和相关系数。
在区间(0,1)中随机地取两个数,则这两个数之差的绝对值小于的概率为________。
设随机变量X与Y相互独立,且X服从标准正态分布N(0,1),Y的概率分布为P{Y=0}=P{Y=1)=。记Fz(z)为随机变量Z=xy的分布函数,则函数Fz(z)的间断点个数为
设微分方程及初始条件为(Ⅰ)求满足上述微分方程及初始条件的特解;(Ⅱ)是否存在那种常数y1,使对应解y=y(x)存在斜渐近线,请求出此y1及相应的斜渐近线方程.
设D=为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.利用(1)的结果判断矩阵B-CTA-1C是否为正定矩阵,并证明结论.
随机试题
根据《保险法》的规定,分期交付保险费的人身保险合同中,投保人迟延交付保险费的宽限期是
牙间刷刷牙
小量不保留灌肠的目的不包括( )。【历年考试真题】
企业的非流动负债包括( )。
在经济发展过程中,()是重要的先决条件。
关于婴儿的胃说法错误的是()。[浙江省2011年11月三级真题]
教师按一定的教学要求向学生提出问题,要求学生回答,并通过问答的形式来引导学生获取或巩固知识的方法是()。
19世纪法国作家左拉是_______。
在关系模型中,每一个二维表称为一个
DifferencesBetweenCulturesinNon-verbalCommunicationsI.Culturalinfluenceonnonverbalbehaviour—Low-contextculturesth
最新回复
(
0
)