首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c为 (0,1)内任意一点. (1)写出f(x)在x=c处带Lagrange型余项的一阶泰勒公式; (2)证明:|f’(c)|≤2a+.
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c为 (0,1)内任意一点. (1)写出f(x)在x=c处带Lagrange型余项的一阶泰勒公式; (2)证明:|f’(c)|≤2a+.
admin
2018-01-23
89
问题
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c为
(0,1)内任意一点.
(1)写出f(x)在x=c处带Lagrange型余项的一阶泰勒公式;
(2)证明:|f’(c)|≤2a+
.
选项
答案
(1)f(x)=f(c)+f’(c)(x-c)+[*](x-c)
2
,其中ξ介于c与x之间. (2)分别令x=0,x=1,得 f(0)=f(c)-f’(c)c+[*]c
2
,ξ
1
∈(0,c), f(1)=f(c)+f’(c)(1-c)+[*](1-c
2
),ξ
2
∈(c,1), 两式相减,得f’(c)=f(1)-f(0)+[*](1-c)
2
,利用已知条件,得 |f’(c)|≤2a+[*][c
2
+(1-c)
2
], 因为c
2
+(1-c)
2
≤1,所以|f’(c)|≤2a+[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/qyX4777K
0
考研数学三
相关试题推荐
极限
函数的可去间断点的个数为
已知函数y=e2x+(x+1)ex是二阶常系数线性非齐次方程的解.求方程通解及方程.
假设某企业在两个相互分割的市场上出售同一种产品,两个市场的需求函数分别为p1=18一2Q1,p2=12一Q2其中p1和p2分别表示该产品在两个市场的价格(单位:万元/吨),Q1和Q2分别表示该产品在两个市场的销售量(即需求量,单位:吨)并且该企业生产这
设函数f(x)在区间[0,1]上具有连续导数,f(0)=1,且满足,其中D1={(x,y)|0≤y≤t一x,0≤x≤t)(0<t≤1).求f(x)表达式.
证明方程恰有两个实根.
设A、B均为n阶非零矩阵,且AB=O,则A与B的秩【】
求极限
做半径为R的球的外切正圆锥,问此圆锥的高h取何值,其体积最小,最小值是多少?
设A是3阶实对称矩阵,A~B,其中B=.(Ⅰ)求A的特征值;(Ⅱ)若ξ1=(1,1,0)T,ξ2=(2,2,0)T,ξ3=(0,2,1)T,ξ4=(5,—1,一3)T都是A的对应于λ1=λ2=0的特征向量,求A的对应于λ3的特
随机试题
甲县工商局对汤山纺织厂作山罚款200万元的处罚决定,并且立即执行。汤山纺织厂向市工商局申请复议,市工商局维持了处罚决定,纺织厂随后向法院提起诉讼,一审法院判决维持该处罚决定。汤山纺织厂提出上诉,在二审中才提出损害赔偿的要求,二审法院认定县工商局作出的处
依其控制的内容,经营者控制的可分为【】
酚妥拉明:
撤销权在性质上属于()。
由具有专业知识和经验的工程技术人员对资产的实体各主要部位进行观察,以判断确定被评估建筑物的损耗率的方法称为( )。
阅读《珍珠鸟》教学实录(片段),按照要求答题。师:(看图)在作者眼里,鸟是幸福的,作者也是幸福的。这是多么美好的意境呀!你能给书上的插图起个名字吗?(学生思考片刻,纷纷举手)生:“幸福人家”。生:“友谊地久天长”。
在一种网络游戏中,如果一位玩家在A地拥有一家旅馆,他就必须同时拥有A地和B地。如果他在C花园拥有一家旅馆,他就必须拥有C花园以及A地和B地两者之一。如果他拥有B地,他还拥有C花园。假如该玩家不拥有B地,可以推出下面哪一个结论?
若函数f(x)=(x-1)(x-2)(x-3)(x-4),则f’(x)的零点的个数为()。
America—thegreat"meltingpot"—hasalwaysbeenarichblendofculturaltraditionsfromallovertheworld.ManyAmericanfamil
Holdthereceiverasclosetoyourearaspossibleandtakedowneverywordofthemessage.
最新回复
(
0
)