首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1。过曲线y=y(x)上任一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,且2S1-S2=1,
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1。过曲线y=y(x)上任一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,且2S1-S2=1,
admin
2018-12-27
52
问题
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1。过曲线y=y(x)上任一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形面积记为S
1
,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S
2
,且2S
1
-S
2
=1,求此曲线y=y(x)的方程。
选项
答案
设曲线y=y(x)上点P(x,y)处的切线斜率为y’,则切线方程为 Y-y=y’(X-x), 它与x轴交点为[*] [*] 由题设条件可知[*] 即[*] 上式两边对x求导并化简,得yy"-(y’)
2
=0,此为不显含x的可降阶方程,令y’=p,则[*]因此原方程化为 [*] 即[*]解得p=C
1
y。 (*)式中令x=0,得y’(0)=p(0)=1,代入p=C
1
y,得C
1
=1。 故p=y,即y’=y,解得y=e
x
。
解析
转载请注明原文地址:https://kaotiyun.com/show/r1M4777K
0
考研数学一
相关试题推荐
设a≠b,证明:
设4阶方阵A的秩为2,则其伴随矩阵A*的秩为________.
函数在(0,0)点处
若二元函数f(x,y)在(x0,y0)处可微,则在(x0,y0)点下列结论中不一定成立的是
过点(一1,2,3),垂直于直线且平行于平面7x+8y+9z+10=0的直线方程是_______
设+yf(x+y),其中f具有二阶连续导数,求
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.(1)计算PTDP,其中(Ek为k阶单位矩阵);(2)利用(1)的结果判断矩阵B一CTA-1C是否为正定矩阵,并证明你的结论.
(97年)设两个相互独立的随机变量X和Y的方差分别为4和2,则随机变量3X一2Y的方差是
(13年)设奇函数f(x)在[一1,1]上具有2阶导数,且f(1)=1.证明:(I)存在ξ∈(0,1),使得f’(ξ)=1;(Ⅱ)存在η∈(一1,1),使得f"(η)+f’(η)=1.
求下列极限:(I)w=(Ⅱ)w=
随机试题
溃疡性结肠炎必有的症状是()
治疗坐骨神经痛应选取的主穴为
下列有关口对口人工呼吸的叙述不正确的是
口服地西泮不能应用于
薄、楔束的功能是
人民法院在审判过程中,如果有被告经依法传唤,无正当理由而拒不到庭的,人民法院可以将其拘传。人民法院依法拘传被告人下列做法哪些不符合刑事诉讼法相关规定?
按照PDCA循环开展项目质量管理工作时,P阶段的工作内容是()。
货物查验结束后,报关员在阅读“海关进出境货物查验记录单”时,应注意的情况包括()。
某公司月成本考核例会上,各部门经理正在讨论、认定直接人工效率差异的责任部门。根据你的判断,该责任部门应是()。
ShouldPetsBeForbiddeninDormitory?1.现在很多大学生在寝室养宠物2.有人赞成,有人则反对3.我的观点
最新回复
(
0
)