首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2011年] 设A为三阶实对称矩阵,A的秩为2,且 求A的所有特征值与特征向量;
[2011年] 设A为三阶实对称矩阵,A的秩为2,且 求A的所有特征值与特征向量;
admin
2019-07-23
35
问题
[2011年] 设A为三阶实对称矩阵,A的秩为2,且
求A的所有特征值与特征向量;
选项
答案
因A的秩为2,A又为实对称矩阵,故A可相似对角化,且其非零特征值,即其相似对角矩阵上的非零主对角元只有两个.因而0为A的一个特征值,由题设可得 A[1,0,一1]
T
=一[一1,0,1]
T
, A[1,0,1]=[1,0,1]
T
. 故λ
1
=一1是A的一个特征值,且属于一1的所有特征向量为 k
1
α
1
=k
1
[1,0,一1]
T
,其中k
1
为任意非零常数; λ
2
=1也是A的一个特征值,且属于λ
2
=1的所有特征向量为 k
2
α
2
=k
2
[1,0,1]
T
,其中k
2
为任意非零常数. 设[x
1
,x
2
,x
3
]
T
为A的属于特征值0的特征向量.由于A为实对称矩阵,则 [*] 即 [*] 由 [*] 知,属于0的所有特征向量为k
3
α
3
=k
3
[0,1,0]
T
,其中k
3
为任意非零常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/r5c4777K
0
考研数学一
相关试题推荐
设X1,X2,…,Xn是取自正态总体N(0,σ2)的简单随机样本,与S2分别是样本均值与样本方差,则()
设矩阵A=(aij)n×m的秩为n,记A的元素aij的代数余子式为Aij,并记A的前r行组成的r×n矩阵为B,证明:向量组α1=(Ar+1,1,…,Ar+1,n)Tα2=(Ar+2,1,…,Ar+2,n)T…αn—
设n阶矩阵(1)求A的特征值和特征向量;(2)求可逆矩阵P,使P-1AP为对角矩阵.
求八分之一球面x2+y2+z2=R2,x≥0,y≥0,z≥0的边界曲线的质心,设曲线线密度ρ=1.
若由曲线y=,曲线上某点处的切线以及x=1,x=3围成的平面区域的面积最小,则该切线是().
A=,求A的特征值.判断a,b取什么值时A相似于对角矩阵。
设随机变量X~B(1,),Y~E(1),且X与Y相互独立.记Z=(2X-1)Y,(Y,Z)的分布函数为F(y,z).求:(Ⅰ)Z的概率密度fZ(z);(Ⅱ)F(2,-1)的值.
对某一目标进行多次同等规模的轰炸,每次轰炸命中目标的炸弹数目是个随机变量,假设其期望值为2,标准差是1.3,计算在100次轰炸中有180颗到220颗炸弹命中目标的概率.
随机试题
资产评估结论是为资产业务提供专业化估价意见,这个意见本身()
女,24岁,上腹部疼痛并向下腹部放射4天,伴恶心、呕吐,卧位不愿翻身,立位不愿直腰。检查:急性面容,腹稍胀,两下腹部均有压痛及轻度反跳痛,以右侧为著,右下腹可扪及5cm×3cm包块,边界不清,固定;白细胞计数12×109/L。经螺旋CT扫描确定该患者诊
某热电公司的新建项目工程,占地面积6.5万平方米,建筑面积3.7万平方米,采用中温中压锅炉,单机容量30万千瓦,主要设备包括:循环流化床锅炉、抽凝式汽轮发电机组、钠离子交换器、湿式脱硫除尘器等。主要能源来自于燃煤,同时使用大量的水进行冷却。配套工程有除灰渣
某载重汽车原值为29万元,预计行使里程为30万公里,预计残值率为5%,某月实际行使里程为1000公里,则按工作量法,本月应计提的折旧额为( )元。
拖拉架梁方法按照牵引方式可分为()。
我国三大妈祖庙分别在()。
既通过集体的管理去影响个人,又通过对个人的直接管理影响集体。这样的班级管理模式称为()
长城绵延万里,有众多关卡,下列不属于长城关卡并且与其所处地区对应错误的是:
2012年7月27日,第三十届夏季奥林匹克运动会在英国伦敦开幕。其吉祥物标志迅速进行了商标注册,作为有偿使用的吉祥物标志()。
咬人草小记①在新疆,有一次到山里访问哈萨克牧人,很偶然地认识了一种奇怪的植物。②如果不是新疆友人介绍,我决不会注意它们的。那是在爬坡的路上,前面的人突然大声叫起来:③“小心!咬人草!”④咬人草?草会咬人,我有点不相信。这是生
最新回复
(
0
)