首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X在区间[-1,1]上服从均匀分布,随机变量(Ⅰ)Y=,(Ⅱ)Y=,试分别求出DY与Cov(X,Y).
设随机变量X在区间[-1,1]上服从均匀分布,随机变量(Ⅰ)Y=,(Ⅱ)Y=,试分别求出DY与Cov(X,Y).
admin
2018-11-23
66
问题
设随机变量X在区间[-1,1]上服从均匀分布,随机变量(Ⅰ)Y=
,(Ⅱ)Y=
,试分别求出DY与Cov(X,Y).
选项
答案
显然Y是X的函数:Y=g(X),因此计算DY可以直接应用公式EY=Eg(X),或用定义计算. (Ⅰ)已知X~f(χ)=[*] EY=Eg(X)=∫
-∞
+∞
g(χ)f(χ)dz=∫
-∞
0
(-1)f(χ)dχ+∫
0
+∞
f(χ)dχ =[*]=0, EY
2
=Eg
2
(X)=∫
-∞
+∞
g
2
(χ)f(χ)dχ=∫
-∞
+∞
f(χ)dχ=1, 故DY=EY
2
-(EY)
2
=1-0=1. 或者EY=1×P{Y=1}+0×P{Y=0}+(-1)×P{Y=-1} =P{X>0}-P{X<0}=[*]=0, 又Y
2
=[*]所以 DY=EY
2
-(EY)
2
=EY
2
=P{X≠0}=P{X>0}+P{X<0}=1, Cov(X,Y)=EXY-BXEY=EXY=∫
-∞
+∞
χg(χ)f(χ)dχ=[*]. (Ⅱ)由于Y=[*]g(X),故 [*] 又Cov(X,Y)=EXY-EXEY,其中EX=0, [*] 所以Cov(X,Y)=1-[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/f6M4777K
0
考研数学一
相关试题推荐
假设二维随机变量(X,Y)在矩形区域G={(x,y)|0≤x≤2,0≤y≤l}上服从均匀分布,记(Ⅰ)求U和V的联合分布;(Ⅱ)求U和V的相关系数ρ。
设f(x)在区间[0,1]上连续,在(0,1)内可导,且满足证明:存在ξ∈(0,1),使得f’(ξ)=2ξf(ξ).
设x∈[0,a]时f(x)连续且f(x)>0(x∈(0,a]),又满足f(x)=,求f(x).
设事件A与B相互独立,已知它们都不发生的概率为0.16,又知A发生B不发生的概率与B发生A不发生的概率相等,则A与B都发生的概率是__________.
若在区间(0,1)上随机地取两个数u,ν,则关于x的一元二次方程x2一2νx+u=0有实根的概率为________.
设A是秩为3的5×4矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,若α1+α2+2α3=(2,0,0,0)T,3α1+α2=(2,4,6,8)T,则方程组Ax=b的通解是___________.
已知向量组与向量组具有相同的秩,且β3可由α1,α2,α3线性表示,求a、b的值.
从均值为μ,方差为σ2>0的总体中分别抽取容量为n1和n2的两个独立样本,样本均值分别记为X1和X2.试证:对任意满足a+b=1的常数a、b,都是μ的无偏估计.并确定a、b,使D(T)达到最小.
假设二次型f(x1,x2,x3)=(x1+ax2-2x3)2+(2x2+3x3)2+(x1+3x2+ax3)2正定,则a满足的关系式为_______.
有三个盒子,第一个盒子有4个红球1个黑球,第二个盒子有3个红球2个黑球,第三个盒子有2个红球3个黑球,如果任取一个盒子,从中任取3个球,以X表示红球个数.写出X的分布律;
随机试题
肺癌空洞、肺结核空洞、肺脓疡空洞最可靠的鉴别方法是
关于呼吸衰竭的治疗,错误的是
男性,68岁。查体:中上腹触及一3cm×4cm×6cm肿块,质硬,表面不平,形状不规则。该肿块考虑为
以下构成走私罪的是哪些?()
(2014年)在完全相同的条件下所进行的一系列重复测量称为()。
在市场调查的方法中,与网络调查法相比,观察法的特点有()。
2008年12月1日,甲、乙双方签订合同,甲向乙购入价值800万元的二手机器设备,按照合同约定,12月5日乙向甲发货,甲承诺5个月后付款,该买卖合同中没有订立所有权保留性质的条款。由于乙还需要该机器设备生产最后一批商品,因此甲乙又在合同中约定,该设备自12
个体通过自己的学业成就而获得相应的地位和声望需要属于()。
He’llneverforgetthedays______helivedinthecountryside,whichisagreathelptohiswriting.
PASSAGEFOUR
最新回复
(
0
)