首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
α1,α2,α3,α4均是3维非零向量.则下列命题正确的是 ( )
α1,α2,α3,α4均是3维非零向量.则下列命题正确的是 ( )
admin
2018-12-21
96
问题
α
1
,α
2
,α
3
,α
4
均是3维非零向量.则下列命题正确的是 ( )
选项
A、若α
1
,α
2
线性相关,α
3
,α
4
线性相关,则α
1
﹢α
3
,α
2
﹢α
4
线性相关.
B、若α
1
,α
2
,α
3
线性无关,则α
1
﹢α
4
,α
2
﹢α
4
,α
3
﹢α
4
线性无关.
C、若α
4
可由α
1
,α
2
,α
3
线性表出,则α
1
,α
2
,α
3
线性无关.
D、若α
4
不可由α
1
,α
2
,α
3
线性表出,则α
1
,α
2
,α
3
线性相关.
答案
D
解析
对于(A),若α
1
=(1,0,0),α
2
=(2,0,0),α
1
,α
2
线性相关;α
3
=(0,0,3),α
4
=(0,0,4),α
3
,α
4
线性相关.
但α
1
﹢α
3
=(1,0,3),α
2
﹢α
4
=(2,0,4)线性无关.(A)不成立.
对于(B),α
1
,α
2
,α
3
线性无关.若α
4
=-α
1
1,则α
1
﹢α
4
=0,故α
1
﹢α
4
,α
2
﹢α
4
,α
3
﹢α
4
线性相关.(B)不成立.
对于(C),若α
2
=-α
1
且α
4
=α
1
﹢α
2
﹢2α
3
,但α
1
,α
2
,α
3
线性相关.(C)不成立.
由排除法,应选(D).对于(D),因为4个3维向量必线性相关,若α
1
,α
2
,α
3
线性无关,则α
4
必可由α
1
,α
2
,α
3
线性表出(且表示法唯一).现α
4
不能由α
1
,α
2
,α
3
线性表出,故α
1
,α
2
,α
3
必线性相关,故应选(D).
转载请注明原文地址:https://kaotiyun.com/show/r8j4777K
0
考研数学二
相关试题推荐
(2010年)设A=,正交矩阵Q使得QTAQ为对角矩阵.若Q的第1列为(1,2,1)T,求a,Q.
(2010年)设A为4阶实对称矩阵,且A2+A=O.若A的秩为3,则A相似于【】
(2002年)已知曲线的极坐标方程是r=1-cosθ,求该曲线上对应于0=处的切线与法线的直角坐标方程.
(2011年)设函数f(χ)在χ=0处可导,且f(0)=0,则=【】
(2013年)曲线对应于t=1的点处的法线方程为_______.
(2008年)设f(χ)是区间[0,+∞)上具有连续导数的单调增加函数,且f(0)=1.对任意的t∈[0,+∞),直线χ=0,χ=t,曲线y=f(χ)以及χ轴所围成的曲边梯形绕z轴旋转一周生成一旋转体.若该旋转体的侧面面积在数值上等于其体积的2倍,求函数f
(2003年)有一平底容器,其内侧壁是由曲线χ=φ(y)(y≥0)绕y轴旋转而成的旋转曲面(如图),容器的底面圆的半径为2m.根据设计要求,当以3m3/min的速率向容器内注入液体时,液面的面积将以πm3/min的速率均匀扩大(假设注入液体前,容器内无液体
(1993年)设χ>0,常数a>e,证明:(a+χ)a<aa+χ
(1991年)曲线y=(χ-1)(χ-2)和χ轴围成一平面图形,求此平面图形绕y轴旋转一周所成的旋转体的体积.
(2012年)已知函数f(χ)=,记a=f(χ).(Ⅰ)求a的值;(Ⅱ)若当χ→0时,f(χ)-a与χk是同阶无穷小,求常数k的值.
随机试题
在会计核算的各种方法中,________占有重要位置,它决定着账户开设、报表结构设计,是一种基本的会计核算方法。
A.心律失常B.急性肺水肿C.低血压D.体循环栓塞E.肺动脉栓塞患者除颤后出现口齿不清,右侧肢体乏力,肌力2级,首先考虑为
下列哪几项不属于国家债务的继承范围?
下列五个选项中,说法正确的有()。
企业人力资源管理发展规划的评价内容一般包括()。
李某系某校中学教师,因故意犯罪被处三年有期徒刑。按照《中华人民共和国教师法》的相关规定,以下说法正确的是()。
任免和聘用干部的公文文种为()。
设函数f(x)在[a,b]上连续,x1,x2,…,xn,…是[a,b]上的一个点列,求
HooversBookstoreBigEventBookSigningMadhuGuptaHooversBookstore,cornerofMasbySt.and3rdAve.,from6pmto7pm
Lookatthenotesbelow.Someinformationismissing.YouwillheartheChiefFinancialOfficerispresentingtheannualreport
最新回复
(
0
)