(2008年)设f(χ)是区间[0,+∞)上具有连续导数的单调增加函数,且f(0)=1.对任意的t∈[0,+∞),直线χ=0,χ=t,曲线y=f(χ)以及χ轴所围成的曲边梯形绕z轴旋转一周生成一旋转体.若该旋转体的侧面面积在数值上等于其体积的2倍,求函数f

admin2016-05-30  46

问题 (2008年)设f(χ)是区间[0,+∞)上具有连续导数的单调增加函数,且f(0)=1.对任意的t∈[0,+∞),直线χ=0,χ=t,曲线y=f(χ)以及χ轴所围成的曲边梯形绕z轴旋转一周生成一旋转体.若该旋转体的侧面面积在数值上等于其体积的2倍,求函数f(χ)的表达式.

选项

答案旋转体的体积V=π∫0tf2(χ)dχ,侧面积S=2π∫0tf(χ)[*],由题设条件知 [*] 上式两端对t求导得f2(t)=f(t)[*] 即y′=[*]. 由分离变量法解得 [*] 将y(0)=1代入知C=1,故 [*] 于是所求函数为y=f(χ)=[*](eχ+e-χ).

解析
转载请注明原文地址:https://kaotiyun.com/show/jzt4777K
0

最新回复(0)