首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶矩阵,a1,a2,a3为三维列向量且a1≠0,若Aa1=a1,Aa1=a1+a2,Aa3=a2+a3. (Ⅰ)证明:向量组a1,a2,a3线性无关. (Ⅱ)证明:A不可相似对角化.
设A是三阶矩阵,a1,a2,a3为三维列向量且a1≠0,若Aa1=a1,Aa1=a1+a2,Aa3=a2+a3. (Ⅰ)证明:向量组a1,a2,a3线性无关. (Ⅱ)证明:A不可相似对角化.
admin
2020-04-09
27
问题
设A是三阶矩阵,a
1
,a
2
,a
3
为三维列向量且a
1
≠0,若Aa
1
=a
1
,Aa
1
=a
1
+a
2
,Aa
3
=a
2
+a
3
.
(Ⅰ)证明:向量组a
1
,a
2
,a
3
线性无关.
(Ⅱ)证明:A不可相似对角化.
选项
答案
(I)由Aa
1
=a
1
得(A—E)a
1
=0, 由Aa
2
一a
1
+a
2
得(A—E)a
2
=a
1
, 由Aa
36
=a
2
+a
3
得(A—E)a
3
=a
2
. 令 k
1
a
1
+k
2
a
2
+k
3
a
3
=0, 1) 两边左乘以(A-E)得k
2
a
1
+k
3
a
2
=0, 两边再左乘(A—E)得k
3
a
1
=0, 由a
1
≠0得k
3
=0,代人2)得k
2
a
1
=0,则k
2
=0, 再代人1)得k
1
a
1
=0,从而k
1
=0,于是a
1
,a
2
,a
3
线性无关. (Ⅱ)令P=(a
1
,a
2
,a
3
), 由(Aa
1
,Aa
2
,Aa
3
)=(a
1
,a
1
+a
2
,a
2
+a
3
)得AP=P[*], 从而[*] 由|λE一A|=|λE一B|一(λ一1)
3
=0得A的特征值为λ
1
=λ
2
=λ
3
=1, E—B=[*],因为r(E-B)=2,所以B只有一个线性无关的特征向量,即B不可相似对角化,而A~B,故A不可相似对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/r9x4777K
0
考研数学三
相关试题推荐
设随机变量X,Y同分布,X的密度为f(x)=设A={X>a}与B={Y>a}相互独立,且P(A+B)=.求:(1)a;(2)E.
设f(x)二阶连续可导,f"(0)=4,
(1)验证函数y(x)=(一∞<x<+∞)满足微分方程y”+y’+y=ex.(2)求幂级数y(x)=的和函数.
已知函数f(x)满足方程f”(x)+f’(x)一2f(x)=0及f”(x)+f(x)=2ex,(1)求f(x)的表达式;(2)求曲线y=f(x2)∫0xf(-t2)dt的拐点.
设A是n阶实反对称矩阵,证明(E一A)(E+A)-1是正交矩阵.
函数的定义域为________.
设总体X与Y独立且都服从正态分布N(0,σ2),已知X1,…,Xm与Y1,…,Yn是分别来自总体X与Y的简单随机样本,统计量=______.
设随机变量X在区间(1,3)上服从均匀分布,而Y在区间(X,3)上服从均匀分布.试求:(Ⅰ)随机变量X和Y的联合概率密度f(x,y);(Ⅱ)随机变量Y的概率密度fY(y).
设A,B均为n阶矩阵,|A|=2,|B|=-3,则|2A*B-1|=_______.
方程组有解的充要条件是_________.
随机试题
“永州八记”写于柳宗元被贬为________时,其首篇是《________》。
以下观点何项是《诸病源候论》提出的
男性,30岁。患出血坏死性胰腺炎2周,经治疗,高热不退,持续腹痛。体检:上腹扪及一块物。血淀粉酶1000U/L(Somogyi法),血白细胞14×109/L,中性粒细胞0.85(85%)。最可能的原因是
病理切片中见到绒毛结构的疾病不是流产后不规则流血,子宫内容物组织学检查为成团的滋养细胞,未见绒毛结构,诊断为
目前,各银行还根据个人需求提供个性化的还款方式及还款服务,较为常见的特色还款方式包括()。
日用小杂品的配送在现实生活中,往往都是采用()方法来向用户供货和发送货物的。
Sociologists(社会学家)tellusthatweareheadingforasocietyleisure.Thetrendisunmistakable.Onehundredyearsago,theypo
A、 B、 C、 D、 C确认图片中有孩子们和一位女士在公交车旁排成一队,同时公交车里面的男士正在看着他们。
A、Newspaperoflowprice.B、Newspaperwithattractiveheadline.C、Newspaperwithsportspage.D、Newspaperwithbusinesssection.
A、Theinterpersonalrelationship.B、Thehighpressure.C、Theservantsystem.D、Therapidprogress.B原文提到美国人对时间又爱又十艮,后面具体解释原因,答案依
最新回复
(
0
)