首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x)满足方程f”(x)+f’(x)一2f(x)=0及f”(x)+f(x)=2ex, (1)求f(x)的表达式; (2)求曲线y=f(x2)∫0xf(-t2)dt的拐点.
已知函数f(x)满足方程f”(x)+f’(x)一2f(x)=0及f”(x)+f(x)=2ex, (1)求f(x)的表达式; (2)求曲线y=f(x2)∫0xf(-t2)dt的拐点.
admin
2019-03-12
66
问题
已知函数f(x)满足方程f”(x)+f’(x)一2f(x)=0及f”(x)+f(x)=2e
x
,
(1)求f(x)的表达式;
(2)求曲线y=f(x
2
)∫
0
x
f(-t
2
)dt的拐点.
选项
答案
(1)齐次微分方程f”(x)+f’(x)一f(x)=0的特征方程为r
2
+r一2=0,特征根为r
1
=1,r
2
=-2, 所以其通解为 f(x)=C
1
e
x
+C
2
e
-2x
. 再由 f”(x)+f(x)=2e
x
得 2C
1
e
x
+5C
2
e
-2x
=2e
x
, 比较函数可得 C
1
=1,C
2
=0. 故 f(x)=e
x
[*] 令y”=0得x=0. 为了说明x=0是y”=0唯一的解,我们来讨论y”在x>0和x<0时的符号. 当x>0时, [*] 可知y”>0; 当x<0时, [*] 可知y”<0; 因此x=0是y”=0唯一的解. 同时,由上述讨论可知曲线 y=f(x
2
)∫
0
x
f(-t
2
)dt, 在x=0左右两边的凹凸性相反,可知(0,0)点是曲线y=f(x
2
)∫
0
2
f(一t
2
)dt唯一的拐点.
解析
转载请注明原文地址:https://kaotiyun.com/show/4NP4777K
0
考研数学三
相关试题推荐
设非齐次方程组AX=β有解ξ1,ξ2,ξ3,其中ξ1=(1,2,3,4)T,ξ2+ξ3=(0,1,2,3)T,r(A)=3.求通解.
已知ξ=(0,1,0)T是方程组的解,求通解.
设an=tan0xdx,(Ⅰ)求(an+an+2)的值;(Ⅱ)试证:对任意的常数λ>0级数收敛.
判别下列正项级数的敛散性:(Ⅰ),其中{xn}是单调递增而且有界的正数数列.
求二元函数f(x,y)=x4+y4—2x2一2y2+4xy的极值.
设z=f(u,v,x),u=φ(x,y),v=ψ(y)都是可微函数,求复合函数z=f(φ(x,y),ψ(y),x)的偏导数.
假设某种型号的螺丝钉的重量是随机变量,期望值为50克,标准差为5克.求:100个螺丝钉一袋的重量超过5.1千克的概率;
已知随机变量X的概率分布为且P{X≥2}=,求未知参数θ及X的分布函数F(x).
设总体X在区间[0,θ]上服从均匀分布,X1,X2,…,Xn是取自总体X的简单随机样本,,X(n)=max(X1,…,Xn).求常数a,b,使.
设X一N(μ,σ2),其中μ和σ2(σ>0)均为未知参数,从总体X中抽取样本X1,X2,…,Xn样本均值为,则未知参数μ和σ2的矩估计量分别为.
随机试题
申请人不可以申请免验的情形是()
黄酮类化合物的颜色主要取决于分子结构中的
慢性肺心病最常见的病因为
2010年11月13日,某双苯厂硝基苯精馏塔发生爆炸,造成8人死亡,60人受伤,直接经济损失6908万元,并引发松花江水污染事件。国务院事故及事件调查组认定,中石油吉林石化分公司双苯厂“11.13”,爆炸事故和松花江水污染事件是一起特大生产安全责任事故和特
2009年5月,某市国税局稽查局在一次检查中发现,浩华公司于2005年6月至2007年1月期间,以2万元价格从威力公司购买增值税专用发票75份,涉及税额近120万元,已全部抵扣。2005年6月至2009年2月,在没有货物交易的情况下,浩华公司向7人开具增值
在教学中为完成教学任务,师生之间借以相互传递信息或影响的工具、设备、媒体及其科学运用是指()
谈话法的基本要求是()。
明代大礼仪之争发生在明朝()年间。
近代中国社会各种矛盾中最主要的矛盾是()
WhatwerethetwoenvironmentcampaignersclaimsagainstMcDonald’s?
最新回复
(
0
)