首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组 (I)α1=,α2=,α3= (Ⅱ)β1=,β2=,β3=, 若向量组(I)和向量组(Ⅱ)等价,求α的取值,并将β3用α1,α2,α3,线性表示.
已知向量组 (I)α1=,α2=,α3= (Ⅱ)β1=,β2=,β3=, 若向量组(I)和向量组(Ⅱ)等价,求α的取值,并将β3用α1,α2,α3,线性表示.
admin
2022-09-22
56
问题
已知向量组
(I)α
1
=
,α
2
=
,α
3
=
(Ⅱ)β
1
=
,β
2
=
,β
3
=
,
若向量组(I)和向量组(Ⅱ)等价,求α的取值,并将β
3
用α
1
,α
2
,α
3
,线性表示.
选项
答案
由等价的定义可知β
1
,β
2
,β
3
都能由α
1
,α
2
,α
3
线性表示,则有 r(α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
,β
1
,β
2
,β
3
). 对(α
1
,α
2
,α
3
,β
1
,β
2
,β
3
)作初等行变换可得: (α
1
,α
2
,α
3
,β
1
,β
2
,β
3
)=[*] 当a=-1时,有r(α
1
,α
2
,α
3
)<r(α
1
,α
2
,α
3
,β
1
,β
2
,β
3
); 当a=1时,有r(α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
,β
1
,β
2
,β
3
)=2; 当a≠1且a≠-1时,有r(α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
,β
1
,β
2
,β
3
)=3; 则当a=1或a≠1且a≠-1时,β
1
,β
2
,β
3
可由α
1
,α
2
,α
3
线性表示. 此时,要保证α
1
,α
2
,α
3
可由β
1
,β
2
,β
3
线性表示, 对(β
1
,β
2
,β
3
,α
1
,α
2
,α
3
)作初等行变换可得 [*] 当a=1时,有r(α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
,β
1
,β
2
,β
3
)=2; 当a≠1且a≠-1时,有r(α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
,β
1
,β
2
,β
3
)=3; 此时,α
1
,α
2
,α
3
可由β
1
,β
2
,β
3
线性表示, 综上所述,当a≠-1时,向量组α
1
,α
2
,α
3
与向量组β
1
,β
2
,β
3
可相互线性表示. 当a≠±1时,(α
1
,α
2
,α
3
,β
3
)→[*] 则β
3
=α
1
-α
2
+α
3
. 当a=1时,(α
1
,α
2
,α
3
,β
3
)→[*] 基础解系为[*](k∈R),则β
3
=(3-2k)α
1
+(k-2)α
2
+kα
3
.
解析
转载请注明原文地址:https://kaotiyun.com/show/rJf4777K
0
考研数学二
相关试题推荐
行列式=_________。
=_______.
已知线性方程组无解,则a=________.
设f(x,y)可微,且f’1(-1,3)=-2,f’2(-1,3)=1,令,则dz|(1,3)=______
由曲线χ=a(t-sint),y=a(1-cost)(0≤t≤2π)(摆线)及χ轴围成平面图形的面积5=_______.
设一平面垂直于xOy面,并通过点(1,一1,1)到直线的垂线,求此平面方程.
计算行列式D2n=,其中未写出的元素都是0。
设t>0,则当t→0时,f(t)=[1一cos(x2+y2)]dxdy是t的n阶无穷小量,则n为().
随机试题
下列各项中,能作为短期偿债能力辅助指标的是
原发性胆汁淤积性肝硬化最常见的早期症状为
2012年,某市受理专利申请量82682件,比上年增长3.1%。其中,发明专利37139件,增长15.5%。专利授权量51508件,增长7.4%。其中,发明专利11379件,增长24.2%。2012年全市有高新技术企业4312家,技术先进型服务企业281家
根据《企业会计准则第15号——建造合同》,下列费用中,不应计入工程成本的是()。
()接受承运人的委托,代理与船舶有关的一切业务的人。
可持续增长率可以表达为()。
养花专业户张某为防止花被偷,在花房周围私拉电网。一日晚,李某偷花不慎触电,经送医院抢救,不治身亡。张某对这种结果的主观心理态度是()。
细胞凋亡和程序性坏死的主要区别包括()。
犯罪的主观方面包括()。
Giventhechoice,youngerprofessionalsaremostinterestedinworkingattechcompanieslikeAppleandgovernmentagencieslike
最新回复
(
0
)