首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x,y),φ(x,y)在点P0(x0,y0)的某邻域有连续的一阶偏导数且φ’y(x0,y0)≠0.若P0(x0,y0)是二元函数z=f(x,y)在条件φ(x,y)=0下的极值点,则 证明条件极值点的必要条件,并说明几何意义.
设f(x,y),φ(x,y)在点P0(x0,y0)的某邻域有连续的一阶偏导数且φ’y(x0,y0)≠0.若P0(x0,y0)是二元函数z=f(x,y)在条件φ(x,y)=0下的极值点,则 证明条件极值点的必要条件,并说明几何意义.
admin
2020-03-16
78
问题
设f(x,y),φ(x,y)在点P
0
(x
0
,y
0
)的某邻域有连续的一阶偏导数且φ’
y
(x
0
,y
0
)≠0.若P
0
(x
0
,y
0
)是二元函数z=f(x,y)在条件φ(x,y)=0下的极值点,则
证明条件极值点的必要条件,并说明几何意义.
选项
答案
由所设条件,φ(x,y)=0在x=x
0
的某邻域确定隐函数y=y(x)满足y
0
=y(x
0
),于是P
0
(x
0
,y
0
)是z=f(x,y)在条件φ(x,y)=0下的极值点[*]z=f(x,y(x))在x=x
0
取极值 [*]f’
x
(x
0
,y
0
)+f’
y
(x
0
,y
0
)y’(x
0
)=0. ① 又由φ(x,y(x))=0,两边求导得 φ’
x
(x
0
,y
0
)+φ’
y
(x
0
,y
0
)y’(x
0
)=0,解得y’(x
0
)=-φ’
x
(x
0
,y
0
)/φ’
y
(x
0
,y
0
). ② 将②式代入①式得f’
x
(x
0
,y
0
)-f’
y
(x
0
,y
0
)φ’
x
(x
0
,y
0
)/φ’
y
(x
0
,y
0
)=0. 因此 [*] 在Oxy平面上看,φ(x,y)=0是一条曲线,它在P
0
(x
0
,y
0
)的法向量是(φ’
x
(P
0
),φ’
y
(P
0
)),而f(x,y)=f(x
0
,y
0
)是一条等高线,它在P
0
的法向量是(f’
x
(P
0
),f’
y
(P
0
)),(7.9)式表示这两个法向量平行,于是曲线φ(x,y)=0与等高线f(x,y)=f(P
0
)在点P
0
处相切.
解析
转载请注明原文地址:https://kaotiyun.com/show/tz84777K
0
考研数学二
相关试题推荐
(2000年试题,十一)函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式(1)求导数f’(x);(2)证明:当x≥0时,成立不等式:e-sf(x)≤1.
[2003年]设位于第一象限的曲线y=f(x)过点(√2,1/2),其上任一点P(x,y)处的法线与y轴的交点为Q,且线段PQ被x轴平分.已知曲线y=sinx在[0,π]上的弧长为l,试用l表示曲线y=f(x)的弧长s.
设y=χ(sinχ)cosχ,求dy.
假设:①函数y=f(x)(0≤x≤+∞)满足条件f(0)=0和0≤f(x)≤ex一1;②平行于y轴的动直线MN与曲线y=f(x)和y=ex一1分别相交于点P1和P2;③曲线y=f(x),直线MN与x轴所围成的封闭图形的面积S恒等于线段P1P2的长度。
设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求。
设n阶矩阵A的秩为1,试证:(1)A可以表示成n×1矩阵和1×n矩阵的乘积;(2)存在常数μ,使得Ak=μk一1A.
设4元线性方程组(Ⅰ)为,又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(-1,2,2,1).(1)求线性方程组(Ⅰ)的基础解系;(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解,若没有,
[2012年]设计算行列式∣A∣.
在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0).(1)求L的方程;(2)当L与直线y=ax所围成平面图形的面积为时,确定a的值.
设求[img][/img]
随机试题
DNA分子上能被RNA聚合酶特异结合的部位叫作()
口有涩味如食生柿子的感觉属于
半夏除燥湿化痰,降逆止呕外,还有的功效是
根据商品房建设的需要,可以依照法律程序提前收回已出让的土地使用权,但在收回时应根据土地使用者利用土地的实际情况和土地的剩余年限给予适当赔偿。()
在工程经济分析中,以投资收益率指标作为主要决策依据,其可靠性较差的原因在于()。
根据《会计档案管理办法》的规定,会计档案的保管期限为永久定期两类。会计档案的定期保管期限最短为()
对于《普通高中语文课程标准(实验)》中提出的“表达与交流”方面的实施建议,下列理解不正确的是()。
为了解幼儿同伴交往特点,研究者深入幼儿所在的班级,详细记录其交往过程的语言和作等。这一研究方法属于()。
科学的可靠性还源于科学界具有公认的评价准则,所以能对理论取得一致意见,因此在比较成熟的科学领域,一个问题无论问哪一个科学家,都可以得到大致相同的答案。哲学、伦理学等学科没有公认的评价准则,同一个问题问不同的哲学家或伦理学家可能得到完全相反的结果,令人无所适
Foxesandfarmershavenevergotonwell.Thesesmalldog-likeanimalshavelongbeenaccusedofkillingfarmanimals.Theyare
最新回复
(
0
)