首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调递减,f(0)=0.试证明: f(a+b)≤f(a)+f(b), 其中常数a,b满足条件0≤a≤b≤a+b≤c.
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调递减,f(0)=0.试证明: f(a+b)≤f(a)+f(b), 其中常数a,b满足条件0≤a≤b≤a+b≤c.
admin
2019-04-22
54
问题
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调递减,f(0)=0.试证明:
f(a+b)≤f(a)+f(b),
其中常数a,b满足条件0≤a≤b≤a+b≤c.
选项
答案
方法一 用拉格朗日中值定理. 当a=0时,等号成立. 当a>0时,因f(x)在区间[0,a]及[b,a+b]上满足拉格朗日中值定理,所以存在ξ
1
∈(0,a), ξ
0
∈(b,a+b),ξ
1
<ξ
2
,使得 |f(a+b)一f(b)]一[f(a)一f(0)]=af’(ξ
2
)一af’(ξ
1
). 因为f’(x)在(0,c)内单调递减,所以f’(ξ
2
)≤f’(ξ
1
),于是 [f(a+b)一f(b)]一[f(a)一f(0)]≤0, 即f(a+b)≤f(a)+f(b). 方法二 用函数的单调性. 将f(a+b)一f(b)一f(a)中的b改写为x,构造辅助函数 F(x)=f(a+x)一f(x)一f(a),x∈[0,b], 显然F(0)=0,又因为f’(x)在(0,c)内单调递减,所以 F’(x)=f’(a+x)一f’(x)≤0, 于是有F(b)≤F(0)=0,即f(a+b)一f(b)一f(a)≤0,即f(a+b)≤f(a)+f(b).
解析
转载请注明原文地址:https://kaotiyun.com/show/rRV4777K
0
考研数学二
相关试题推荐
已知线性方程组(1)a,b为何值时,方程组有解;(2)方程组有解时,求出方程组的导出组的基础解系;(3)方程组有解时,求出方程组的全部解.
设L是一条平面曲线,其上任意一点P(x,y)(x>0)到坐标原点的距离,恒等于该点处的切线在y轴上的截距,且L经过点(1)求曲线L的方程;(2)求L位于第一象限部分的一条切线,使该切线与L及两坐标轴所围图形的面积最小
证明不等式:|sinx2-sinx1|≤|x2-x1|
设f(x)=ex-2,求证在区间(0,2)内至少有一点x。,使ex。-2=x。.
设证明曲线y=f(x)在区间(ln2,+∞)上与x轴围成的区域有面积存在,并求此面积。
设,则α,β的值为_______.
微分方程xy’=+y的通解为_______.
连续函数f(x)满足f(x)=f(x-t)dt+2,则f(x)=______
设D是有界闭区域,下列命题中错误的是
设二次型f=2χ12+2χ22+aχ32+2χ1χ2+2bχ1χ3+2χ2χ3经过正交变换X=QY化为标准形f=y12y22+4y32,求参数a,b及正交矩阵Q.
随机试题
可治疗老年便秘、产后便秘的通便类药物是
王某与李某为一幢楼房的权属发生纠纷,起诉至人民法院。张某向人民法院主张该幢楼房归他所有,人民法院遂追加张某为第三人。其后原告王某申请撤诉,根据上述情况下列说法正确的是:
符合条件()时,用电单位宜设置自备电源。
若投资15万元建造一个任何时候均无残值的临时仓库,估计年收益为25000元,假定基准收益率为12%,仓库的寿命期为8年,则该项目()。
通过摆事实、讲道理进行教育的德育方法是___________。
当社会总需求小于社会总供给时,一般不宜采取()。
根据以下资料,回答以下题。2014年,某市十大产业链企业累计完成产值3528.8亿元,同比增长13.4%;实现主营业务收入3478.8亿元、利税348.9亿元、利润222.9亿元,同比分别增长13.0%、19.4%和19.5%。其中,十大产业链规
某眼镜店推出一款墨镜,该墨镜的利润为进价的25%,在“世界护眼日”当月,又推出了一款近视镜,该近视镜的利润为进价的15%,墨镜比近视镜的卖价贵142元,近视镜的进价是墨镜进价的84%,那么墨镜进价为多少元?
“江山多娇—2011.中国百家金陵画展(中国画)”,于11月16日上午在江苏省美术馆举行。(语料来源:《美术报》,2011年11月21日)
Theindustrialsocietieshavebeenextremelyproductiveduringthelasttwocenturies.Theeconomicadvancehasbeen【C1】______
最新回复
(
0
)