首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有平面力F(χ,y)=(P(χ,y),Q(χ,y)),其中P(χ,y)=f(χ)+y[e-χ-f′(χ)],Q(χ,y)=f′(χ),函数f(χ)二阶连续可导,并满足f′(0)=0,试确定f(χ),使得 (Ⅰ)力F对运动质点做的功与质点运动路径无
设有平面力F(χ,y)=(P(χ,y),Q(χ,y)),其中P(χ,y)=f(χ)+y[e-χ-f′(χ)],Q(χ,y)=f′(χ),函数f(χ)二阶连续可导,并满足f′(0)=0,试确定f(χ),使得 (Ⅰ)力F对运动质点做的功与质点运动路径无
admin
2018-06-12
85
问题
设有平面力F(χ,y)=(P(χ,y),Q(χ,y)),其中P(χ,y)=f(χ)+y[e
-χ
-f′(χ)],Q(χ,y)=f′(χ),函数f(χ)二阶连续可导,并满足f′(0)=0,试确定f(χ),使得
(Ⅰ)力F对运动质点做的功与质点运动路径无关;
(Ⅱ)若L是由点A(-1,1)到点8(1,0)逐段光滑的有向曲线,则∫
L
Pdχ+Qdy=
.
选项
答案
条件(Ⅰ)即∫
L
Pdχ+Qdy在全平面与路径无关[*],即 f〞(χ)=e
-χ
-f′(χ),f〞(χ)+f′(χ)=e
-χ
. 现求此方程的解. 这也是可降阶的二阶方程.令p=f′(χ),两边乘μ(χ)=e
∫dχ
=e
χ
得 (e
χ
p)′=1. 积分并注意p(0)=f′(0)=0得 e
χ
f′(χ)=χ,f′(χ)=χe
-χ
. 再积分得f(χ)=-(χ+1)e
-χ
+C. 现由条件(Ⅱ)定出常数C. 因积钋与路径无关.取L如图27—3所示的路径, [*] 则有∫
L
Pdχ+Qdy=∫
1
0
Q(-1,y)dy+∫
-1
1
P(χ,0)dχ =∫
1
0
f′(-1)dy+∫
-1
1
f(χ)dχ =e+∫
-1
1
[-(χ+1)e
-χ
+C]dχ =e+(χ+1)e
-χ
|
-1
1
+e
-χ
|
-1
1
+2C =[*], [*]C=0. 因此,f(χ)=-(χ+1)e
-χ
.
解析
转载请注明原文地址:https://kaotiyun.com/show/rTg4777K
0
考研数学一
相关试题推荐
质量为M,长为l的均匀杆AB吸引着质量为m的质点C,C位于AB的延长线上并与近端距离为a,已求得杆对质点C的引力F=,其中k为引力常数.现将质点C在杆的延长线上从距离近端r0处移至无穷远时,则引力做的功为_______.
在区间(-1,1)上任意投一质点,以X表示该质点的坐标.设该质点落在(-1,1)中任意小区间内的概率与这个小区间的长度成正比,则
袋中装有5个白球,3个红球,第一次从袋中任取一球,取后不放回,第二次从袋中任取2球,用Xi表示第i次取到的白球数,i=1,2.(Ⅰ)求(X1,X2)的联合分布;(Ⅰ)求P{X1=0,X2≠0},P{X1X2=0};(Ⅲ)判断X
证明:若三事件A,B,C相互独立,则A∪B及A-B都与C独立.
已知线性方程组方程组有解时,求出方程组的导出组的基础解系;
已知A,B是三阶方阵,A≠O,AB=O,证明:B不可逆.
求定积分的值
设通过将f(r,t)化为对θ的定积分,其中0≤θ≤2π;
设函数,若曲线积分∫LPdx+Qdy在区域D={(x,y)|y>0"上与路径无关,求参数λ.
设总体X的方差为1,根据来自X的容量为100的简单随机样本,测得样本均值为5,则X的数学期望的置信度近似等于0.95的置信区间为________
随机试题
什么是声调?不同的声调怎么形成的?
屈和内旋膝关节的肌肉有
制造、使用或贮存炸药、火药、起爆药、军工用品等大量爆炸物质,因电火花会引起爆炸,造成巨大破坏和人身伤亡者的建筑物属于()。
施工成本控制要以工程承包合同为依据,围绕降低工程成本这个目标,从()方面着手,努力挖掘增收节支潜力,以求获得最大的经济效益。
公司从银行借来一笔款项,总资产增加,资产负债率降低。()
作为一种特殊的信用风险,()是指交易双方在结算过程中,一方支付了合同资金但另一方发生违约的风险。
根据所给文字资料,回答91~95题2010年5月1日到10月31日,世博会在中国上海举行。自开幕以来,世博会的消费拉动效应初步显现。世博园区共有浦东和浦西两个片区,5月份的销售总额为4.13亿元,其中浦东片区的销售额占89.4%。园区5月份
关于人口对教育发展的影响和制约,不正确的是
若位置4为空位,则下列哪一个一定正确?()若J=11,下列哪一个是8和9可能的安排?()
二阶常系数非齐次线性微分方程y"-4y’+3y=2e2x的通解为y=_________.
最新回复
(
0
)