首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A是3阶矩阵,有特征值λ1一λ2=2,对应两个线性无关的特征向量为ξ1,ξ2,λ3=一2对应的特征向量是ξ3. (Ⅰ)问ξ1+ξ2是否是A的特征向量?说明理由; (Ⅱ)ξ2+ξ3是否是A的特征向量?说明理由; (Ⅲ)证明:任意三维非零向量β(β≠0)都是A
A是3阶矩阵,有特征值λ1一λ2=2,对应两个线性无关的特征向量为ξ1,ξ2,λ3=一2对应的特征向量是ξ3. (Ⅰ)问ξ1+ξ2是否是A的特征向量?说明理由; (Ⅱ)ξ2+ξ3是否是A的特征向量?说明理由; (Ⅲ)证明:任意三维非零向量β(β≠0)都是A
admin
2019-07-01
47
问题
A是3阶矩阵,有特征值λ
1
一λ
2
=2,对应两个线性无关的特征向量为ξ
1
,ξ
2
,λ
3
=一2对应的特征向量是ξ
3
.
(Ⅰ)问ξ
1
+ξ
2
是否是A的特征向量?说明理由;
(Ⅱ)ξ
2
+ξ
3
是否是A的特征向量?说明理由;
(Ⅲ)证明:任意三维非零向量β(β≠0)都是A
2
的特征向量,并求对应的特征值.
选项
答案
(Ⅰ)ξ
1
+ξ
2
仍是A的对应于λ
1
=λ
2
=2的特征向量. 因已知Aξ
1
=2ξ
1
,Aξ
2
=2ξ
2
,故 A(ξ
1
+ξ
2
)=Aξ
1
+Aξ
2
=2ξ
1
+2ξ
2
=2(ξ
1
+ξ
2
). (Ⅱ)ξ
2
+ξ
3
不是A的特征向量.假设是,设其对应的特征值为u,则有 A(ξ
2
+ξ
3
)=μ(ξ
2
+ξ
3
), 得2ξ
2
-2ξ
3
一μξ
2
一μξ
3
=(2-μ)ξ
2
一(2+μ)ξ
3
=0, 因2-μ和2+μ不同时为零,故ξ
2
,ξ
3
线性相关,这和不同特征值对应的特征向量线性无关矛盾, 故ξ
2
+ξ
3
不是A的特征向量. (Ⅲ)因A有特征值λ
1
=λ
2
=2,λ
3
=-2,故A
2
有特征值μ
1
=μ
2
=μ
3
=4.对应的特征向量仍是ξ
1
, ξ
2
,ξ
3
,且ξ
1
,ξ
2
,ξ
3
线性无关.故存在可逆矩阵P=(ξ
1
,ξ
2
,ξ
3
),使得 P
-1
A
2
P=4E,A
2
=P(4E)P
-1
=4E. 从而对任意的β≠0,有A
2
β=4Eβ=4β,故知任意非零向量β都是A
2
的对应于λ=4的特征向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/rUc4777K
0
考研数学一
相关试题推荐
设矩阵A=相似于对角矩阵.求一个正交变换,将二次型f(x1,x2,x3)=xTAx化为标准形,其中x=(x1,x2,x3)T.
设可导,则
[*]
设则下列级数中肯定收敛的是
函数F(χ,y)=是否可以是某随机变量(X,Y)的分布函数?为什么?
设f(x)对一切x1,x2满足f(x1+x2)=f(x1)+f(x2,并且f(x)在x=0处连续.证明:函数f(x)在任意点x0处连续.
设A是3阶矩阵,α1,α2,α3是3维列向量,α1≠0,满足Aα1=2α1,Aα2=α1+2α2,Aα3=α2+2α3.证明α1,α2,α3线性无关;
设An×n是正交矩阵,则()
(Ⅰ)比较的大小,说明理由;(Ⅱ)记
随机试题
A.淋巴结结构破坏,大量单一肿瘤性细胞增生B.淋巴结结构破坏,多种炎细胞及R-S细胞增生C.淋巴结内瘤细胞排列成滤泡结构D.淋巴结结构破坏,大量原始粒细胞浸润滤泡性非霍奇金淋巴瘤
A.Ⅰ/甲B.Ⅰ/乙C.Ⅱ/甲D.Ⅱ/乙E.Ⅲ/丙阑尾穿孔术后切口化脓,应记录为
伴有左心室肥厚的高血压患者降压应首选
以下对城市排水体制的选择不合理的是()。
概算定额手册的内容包括()。
借贷记账法具有以下优点( )。
已知数列{an}的前n项和Sn=n2+kn(k∈N*),且Sn的最大值为8。(1)确定常数k,求an;(2)求数列{}的前n项和Tn。
(1)用热水洗去木屑(2)将纸从印版上揭起并阴干(3)把纸覆盖在版面上,用刷子轻轻刷纸(4)用刷子蘸墨汁均匀刷于版面上(5)将有字的一面贴在木板上,由刻字工逐字雕刻(6)将书稿写于纸上
Ononeoftheshelvesofanolddresser,incompanywitholdanddustysauce-boats,jugs,dishesandplates,andpaidbills,res
DearManager,Iamwritingtoyoutocomplainabouttheserviceinyourhotel.Ihadaterriblestayinroom2532ofOrange
最新回复
(
0
)