首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是秩为n-1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,k是任意常数,则Ax=0的通解必定是 ( )
设A是秩为n-1的n阶矩阵,α1,α2是方程组Ax=0的两个不同的解向量,k是任意常数,则Ax=0的通解必定是 ( )
admin
2018-09-25
59
问题
设A是秩为n-1的n阶矩阵,α
1
,α
2
是方程组Ax=0的两个不同的解向量,k是任意常数,则Ax=0的通解必定是 ( )
选项
A、α
1
+α
2
B、kα
1
C、k(α
1
+α
2
)
D、k(α
1
-α
2
)
答案
D
解析
因为通解中必有任意常数,显然A不正确.由n-r(A)=1知Ax=0的基础解系由一个非零向量构成.但α
1
,α
1
+α
2
与α
1
-α
2
中哪一个一定是非零向量呢?
已知条件只是说α
1
,α
2
是两个不同的解,那么α
1
可以是零解,因而kα
1
可能不是通解.如果α
1
=-α
2
≠0,则α
1
,α
1
是两个不同的解,但α
1
+α
1
=0,即两个不同的解不能保证α
1
+α
2
≠0.因此可排除B,C.由于α
1
≠α
1
,必有α
1
-α
1
≠0.可见D正确.
转载请注明原文地址:https://kaotiyun.com/show/JSg4777K
0
考研数学一
相关试题推荐
求方程y″+2my′+n2y=0的通解;又设y=y(x)是满足y(0)=a,y′(0)=b的特解,求y(x)dx,其中m>n>0,a,b为常数.
求下列微分方程的通解或特解:(Ⅰ)-4y=4x2,y(0)=,y′(0)=2.(Ⅱ)+2y=e-xcosx.
已知A是2n+1阶正交矩阵,即AAT=ATA=E,证明:|E—A2|=0.
设y=f(x)满足△y=△x+o(△x),且f(0)=0,则f(x)dx=____________.
曲面2x2+3y2+z2=6上点P(1,1,1)处指向外侧的法向量为n,求函数u=在点P处沿方向n的方向导数.
设A是n阶正定矩阵,α1,α2,…,αm是n维非零列向量,且Aαj=0(i≠j),证明α1,α2,…,αm线性无关.
设随机变量序列X1,…,Xn,…相互独立且都服从正态分布N(μ,σ2),记Yn=X2n-X2n-1,根据辛钦大数定律,当n→∞时依概率收敛于_________.
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0.证明:向量组α,Aα,…,Ak-1α是线性无关的.
设f(x)在[1,+∞)可导,[xf(x)]≤-kf(x)(x>1),在(1,+∞)的子区间上不恒等,又f(1)≤M,其中后k,M为常数,求证:f(x)<(x>1).
求八分之一球面x2+y2+z2=R2,x≥0,y≥0,z≥0的边界曲线的质心,设曲线线密度ρ=1.
随机试题
试述不良生活方式对健康影响的特点。
下列各组中,每个成员都是词的是()
系统设计分为总体设计和( )两个阶段。
自然人开始享有名誉权的时间是()
以下何项不是郁匪的临床特点
关于共价修饰调节酶下面说法正确的是()。
某建设工程项目建设单位委托某监理公司负责施工阶段的监理工作。经过公开招标由A工程公司总承包该工程施工阶段的任务。该项目工程中的玻璃幕墙工程分包给了B公司。在工程的施工准备阶段,总监理工程师审查了施工总承包单位报送的有关分包单位企业营业执照资料。在工程施工过
DM广告的形式不包括()。
用于内隐记忆研究的加工分离程序,其基本假设包括()(2010.73)
Duetoaconstantly(71)environment,apoorunderstandingoftheuser’sneedsandpreferences,aswellasa(72)ofwillingnessto
最新回复
(
0
)