首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n(n>1)阶矩阵,ξ1,ξ2,…,ξn是n维列向量,若ξN≠0,且Aξ1=ξ2,Aξ2=ξ3,…,Aξn-1=ξn,Aξn=0,证明: (1)ξ1,ξ2,…,ξn线性无关. (2)A不能相似于对角矩阵.
设A是n(n>1)阶矩阵,ξ1,ξ2,…,ξn是n维列向量,若ξN≠0,且Aξ1=ξ2,Aξ2=ξ3,…,Aξn-1=ξn,Aξn=0,证明: (1)ξ1,ξ2,…,ξn线性无关. (2)A不能相似于对角矩阵.
admin
2020-09-25
97
问题
设A是n(n>1)阶矩阵,ξ
1
,ξ
2
,…,ξ
n
是n维列向量,若ξ
N
≠0,且Aξ
1
=ξ
2
,Aξ
2
=ξ
3
,…,Aξ
n-1
=ξ
n
,Aξ
n
=0,证明:
(1)ξ
1
,ξ
2
,…,ξ
n
线性无关.
(2)A不能相似于对角矩阵.
选项
答案
(1)由题意A
k
ξ
1
=Aξ
k
=ξ
k+1
(k=1,2,…,n一1),A
n
ξ
1
=A
n-1
ξ
2
=…=Aξ
n
=0. 设有一组数x
1
,x
2
,…,x
n
使x
1
ξ
1
+x
2
ξ
2
+…+x
n
ξ
n
=0. 以A
n-1
左乘上式两边得x
1
ξ
n
=0,由于ξ
n
≠0,故x
1
=0,类似的可得x
2
=x
3
=…=x
n
=0,因此ξ
1
,ξ
2
,…,ξ
n
线性无关. (2)由题意得 A(ξ
1
,ξ
2
,…,ξ
n
)=(ξ
2
,ξ
3
,…,ξ
n
,0)=(ξ
1
,ξ
2
,…,ξ
n
)[*] 因ξ
1
,ξ
2
,…,ξ
n
线性无关,因此A与矩阵B=[*]相似,因R(B)=n一1,因此R(A)=n一1,因B的特征值全为0,因此A的特征值全为0,因此A的线性无关特征向量只有1个,因此A不可对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/rWx4777K
0
考研数学三
相关试题推荐
设A=,A*是A的伴随矩阵,则(A*)-1=________.
设A,B都是三阶矩阵,A=且满足(A*)-1B=ABA+2A2,则B=______.
设u=e—xsin的值为_________.
微分方程y'=1+x+y2+xy2的通解为_________。
已知α1,α2,α3,β,γ都是4维列向量,且|α1,α2,α3,β|=a,|β+γ,α3,α2,α1|=b,则|2γ,α1,α2,α3|=________.
设A=,B是3阶非零矩阵,且AB=O,则a=________
设α1=(1,2,0)T,α2=(1,a+2,一3a)T,α3=(一1,一b一2,a+2b)T,β=(1,3,一3)T,试讨论当a,b为何值时。(Ⅰ)β不能由α1,α2,α3线性表示;(Ⅱ)β可由α1,α2,α3唯一地线性表示,并求出表
[2004年]二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x2)2的秩为_________.
随机试题
作图分析垄断竞争厂商长期均衡状态。
数据库系统的主要作用是_______。
母乳喂养儿肠道主要的细菌是
幽门梗阻的典型特征是
朱镕基同志在2001年视察北京国家会计学院时,为北京国家会计学院题词的内容不包括( )。
货币市场基金是我国基金市场一类重要的产品类型,以“余额宝”为代表的货币市场基金近年来迅速发展,成为投资者现金管理的良好工具。但货币基金快速发展的同时,同样面临多方面的风险,如T+0赎回方式带来的流动性风险,期限错配问题带来的投资管理风险等。2016年12月
你今天的着装.根据着装学,我们觉得你这个人比较拘谨,你怎么解释?(2012年6月29日湖南省法检系统公务员面试真题)
下列关于编译系统对某高级语言进行翻译的叙述中,错误的是(10)。
重载的关系运算符和逻辑运算符的返回类型应当是_______。
Whatistherestaurantfamousfor?
最新回复
(
0
)