首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n(n>1)阶矩阵,ξ1,ξ2,…,ξn是n维列向量,若ξN≠0,且Aξ1=ξ2,Aξ2=ξ3,…,Aξn-1=ξn,Aξn=0,证明: (1)ξ1,ξ2,…,ξn线性无关. (2)A不能相似于对角矩阵.
设A是n(n>1)阶矩阵,ξ1,ξ2,…,ξn是n维列向量,若ξN≠0,且Aξ1=ξ2,Aξ2=ξ3,…,Aξn-1=ξn,Aξn=0,证明: (1)ξ1,ξ2,…,ξn线性无关. (2)A不能相似于对角矩阵.
admin
2020-09-25
108
问题
设A是n(n>1)阶矩阵,ξ
1
,ξ
2
,…,ξ
n
是n维列向量,若ξ
N
≠0,且Aξ
1
=ξ
2
,Aξ
2
=ξ
3
,…,Aξ
n-1
=ξ
n
,Aξ
n
=0,证明:
(1)ξ
1
,ξ
2
,…,ξ
n
线性无关.
(2)A不能相似于对角矩阵.
选项
答案
(1)由题意A
k
ξ
1
=Aξ
k
=ξ
k+1
(k=1,2,…,n一1),A
n
ξ
1
=A
n-1
ξ
2
=…=Aξ
n
=0. 设有一组数x
1
,x
2
,…,x
n
使x
1
ξ
1
+x
2
ξ
2
+…+x
n
ξ
n
=0. 以A
n-1
左乘上式两边得x
1
ξ
n
=0,由于ξ
n
≠0,故x
1
=0,类似的可得x
2
=x
3
=…=x
n
=0,因此ξ
1
,ξ
2
,…,ξ
n
线性无关. (2)由题意得 A(ξ
1
,ξ
2
,…,ξ
n
)=(ξ
2
,ξ
3
,…,ξ
n
,0)=(ξ
1
,ξ
2
,…,ξ
n
)[*] 因ξ
1
,ξ
2
,…,ξ
n
线性无关,因此A与矩阵B=[*]相似,因R(B)=n一1,因此R(A)=n一1,因B的特征值全为0,因此A的特征值全为0,因此A的线性无关特征向量只有1个,因此A不可对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/rWx4777K
0
考研数学三
相关试题推荐
微分方程xy’一y[1n(xy)一1]=0的通解为__________.
设A=,B是3阶非零矩阵,且AB=O,则Ax=0的通解是__________.
设行向量组(2,1,1,1),(2,1,a,a),(3,2,1,a),(4,3,2,1)线性相关,且a≠1,则a=___________.
微分方程y"+2y’+5y=0的通解为________。
已知方程组无解,则a=_______.
设A为m×n实矩阵,E为n阶单位矩阵.已知矩阵B=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵.
(14年)设随机变量X,Y的概率分布相同,X的概率分布为P{X=0}=,P{X=1}=,且X与Y的相关系数ρXY=.(Ⅰ)求(X,Y)的概率分布;(Ⅱ)求P{X+Y≤1}.
[2015年]设二次型f(x1,x2,x3)在正交变换X=PY下的标准形为2y12+y22-y32,其中P=(e1,e2,e3).若Q=(e1,-e3,e2),则f(x1,x2,x3)在正交变换X=QY下的标准形为().
随机试题
“上有政策,下有对策”有悖于政策有效执行的()
“现在阶段的中国资产阶级民主革命,只有在坚决进行反对资产阶级的斗争中,才能得到彻底胜利。”
下列哪项因素不会引起心肌顿抑的生
根据我国民事诉讼法的规定,下列哪一案件经人民法院调解后,应制作调解书?
F公司是一家制造类上市公司,公司的部分产品外销欧美。2017年该公司面临市场和成本的巨大压力。公司管理层决定,出售丙产品生产线,扩大具有良好前景的丁产品的生产规模。为此.公司财务部进行了财务预测与评价,相关资料如下:资料一:2016年F公司营业收入为37
南通是近代史上中国人最早自主建设和全面经营的城市典范,被誉为“中国近代第一城”。()
某班主任在期末考试结束后,给成绩好的学生颁发“学习小标兵”,给乐于助人的学生颁发“爱心小天使”等奖状,他是运用了()的教育方法。
下列有关对“五四”运动具有新民主主义革命的开端意义的评述中,不正确的是()
在社会经济运行中,当通货膨胀率上升时,一般会导致()。
UML由三个要素构成:UML的基本构造块、支配这些构造块如何放置在一起的规则、用于整个语言的公共机制。UML的词汇表包含三种构造块:事物、关系和图。类、接口、构件属于(1)构造块。泛化和聚集等是(2)。将多边形与三角形、四边形分别设计为类,多边形类与三角形
最新回复
(
0
)