首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(x1,x2,x3)=(1-a)x12+(1-a)x22+2x32+2(1+a)x1x2的秩为2. 求方程f(x1,x2,x3)=0的解.
已知二次型f(x1,x2,x3)=(1-a)x12+(1-a)x22+2x32+2(1+a)x1x2的秩为2. 求方程f(x1,x2,x3)=0的解.
admin
2018-07-27
115
问题
已知二次型f(x
1
,x
2
,x
3
)=(1-a)x
1
2
+(1-a)x
2
2
+2x
3
2
+2(1+a)x
1
x
2
的秩为2.
求方程f(x
1
,x
2
,x
3
)=0的解.
选项
答案
1 在正交变换x=Qy下,f(x
1
,x
2
,x
3
)=0化成2y
1
2
+2y
2
2
=0,解之得y
1
=y
2
=0,从而 [*] =y
3
e
3
=k(-1,1,0)
T
,其中k为任意常数. 2 由于f(x
1
,x
2
,x
3
)=x
1
2
+x
2
2
+2x
3
2
+2x
1
x
2
=(x
1
+x
2
)
2
+2x
3
2
=0,所以 [*] 其通解为x=k(-1,1,0)
T
,其中k为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/rXW4777K
0
考研数学三
相关试题推荐
设f(x)在(-∞,+∞)连续,存在极限.证明:(Ⅰ)设A<B,则对∈(-∞,+∞),使得f(ξ)=μ;(Ⅱ)f(x)在(-∞,+∞)上有界.
在最简单的全概率公式P(B)=P(A)P(B|A)+中,要求事件A与B必须满足的条件是
若在区间(0,1)上随机地取两个数u,v,则关于x的一元二次方程x2-2ux+u=0有实根的概率是_____.
向量组α1=(1,-1,3,0)T,α2=(-2,1,a,1)T,α3=(1,1,-5,-2)T的秩为2,则a=______.
向量组α1=(1,0,1,2)T,α2=(1,1,3,1)T,α3=(2,-1,a+1,5)T线性相关,则a=_______.
设n维向量α1,α2,…,αs,下列命题中正确的是
求正交变换化二次型x12+x22+x32-4x1x2-4x2x3-4x1x3为标准形.
设A是3阶实对称矩阵,A的特征值是6,-6,0,其中λ=6与λ=0的特征向量分别是(1,a,1)T及(a,a+1,1)T,求矩阵A.
已如A,B为三阶矩阵,且有相同的特征值1,2,2,则下列命题:①A,B等价;②A,B相似;③若A,B为实对称矩阵,则A,B合同;④行列式|A一2E|=|2E一A|中,命题成立的有().
(已知A,B为三阶非零方阵,A=,B1=,B2=,B3=为齐次线性方次线性方程组Bx=0的三个解向量,且Ax=B3有解。求Bx=0的通解。
随机试题
A.卵巢包膜增厚,表面光滑,灰白色,有新生血管B.腹膜紫蓝色或褐色结节C.盆腔脏器表面干酪样或粟粒样病灶D.输卵管浆膜面明显充血E.卵巢表面呈乳头状生长或突出实性赘生物盆腔子宫内膜异位症的腹腔镜下表现是
塔回流的作用是什么?
Windows7中,默认打印机的数量可以是多个。
母乳喂养时,喂哺适当的参考指标有
下列贫血发生原因不是由于红细胞生成减少造成的是
军团菌感染应首选
三山五岳
根据一定的教学思想、教学目的和教学内容以及教学主客观条件组织安排教学活动的方式称为________。
社会保障权:是指公民在基本生活需要不能得到满足时请求国家予以保障的权利,是公民在其生存和发展面临着威胁的情况下请求国家给予帮助的权利。根据以上定义,下列选项不属于社会保障权的是( )。
Walking—likeswimming,Bicyclingandrunning—isanaerobicexercise,【C1】______buildsthecapacityforenergyoutputandphysica
最新回复
(
0
)