首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组 的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2…,bn,2n)T.试写出线性方程组 的通解,并说明理由.
已知线性方程组 的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2…,bn,2n)T.试写出线性方程组 的通解,并说明理由.
admin
2017-07-10
110
问题
已知线性方程组
的一个基础解系为(b
11
,b
12
,…,b
1,2n
)
T
,(b
21
,b
22
,…,b
2,2n
)
T
,…,(b
n1
,b
n2
…,b
n,2n
)
T
.试写出线性方程组
的通解,并说明理由.
选项
答案
设方程组(I)与(Ⅱ)的系数矩阵分别为A和B,则由(I)的基础解系可知AB
T
=O,于是BA
T
=(AB
T
)
T
=O,所以A的n个行向量的转置也是方程组(Ⅱ)的n个解向量. 由于(b
11
,b
12
,…,b
1,2n
)
T
,(b
n1
,b
n2
,…,b
n,2n
)
T
,…,(b
n1
,b
n2
,…,b
b,2n
)
T
为方程组(I)的基础解系,所以该向量组线性无关,故r(B)=n,从而方程组(Ⅱ)的基础解系解向量的个数为2n—n=n. 又由于方程组(I)的未知数的个数为2n,基础解系解向量的个数为n,所以方程组(I)的系数矩阵的秩r(A)=n,于是A的n个行向量的转置是线性无关的,从而构成方程组(Ⅱ)的一个基础解系,于是方程组(Ⅱ)的通解为y=k
1
(a
11
,a
12
,…,a
1,2n
)
T
+k
2
(a
21
,a
22
,…,a
2,2n
)
T
+…+k
n
(a
n1
,a
n2
,…,a
n,2n
)
T
,其中k
1
,k
2
,…,k
n
为任意常数.
解析
本题考查齐次线性方程组基础解系的概念和通解的结构以及方程组系数矩阵的秩与基础解系中解向量个数的关系.
转载请注明原文地址:https://kaotiyun.com/show/rYt4777K
0
考研数学二
相关试题推荐
证明:[*]
若A是n阶实对称矩阵,证明:A2=O与A=O可以相互推出.
某型号电子元件寿命(单位:h)服从分布N(160,202),随机抽四件,求其中没有一件寿命小于180h的概率.
设f(x)在区间[a,b]上连续,在(a,b)内可导,证明:在(a,b)内至少存在一点ε,使得
设f(x)在[0,1]上连续,取正值且单调减少,证明
设a。,a1,…an为满足的实数,证明方程a。+a1x+a2x2+…+anxn=0在(0,1)内至少有一个实根.
设A是n(n>1)阶矩阵,满足Ak=2E(k>2,k∈Z+),则(A+)k=().
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=A.
求极限
随机试题
盖氏骨折(Galeazzi)是指
轻中型溃疡性结肠炎治疗的首选药物是
麦门冬汤的组成药物不包括
下列关于纤维素性炎的描述中错误的是
以下选项中,()不属于无效合同。
在西方,()在西方学前教育史上第一次较为系统地阐述了学前儿童的教育问题,主张儿童公育。
多年来,曾老师坚持让学生采用反思记录表、学习日志或成长记录袋等多种方法来记录学习过程,并不断指导学生优化记录的方法。曾老师的做法()。
学绩测验的评分标准既要客观公正,又要注意规定答案要点及提供可接受的变式。()
设f(x,y)在有界闭区域D上二阶连续可偏导,且在区域D内恒有条件,则().
B根据project和willwanttoperseverewith定位到B段。该段第1句提到,对所研究的课题要抱有热情是所有研究生一致达成的共识。文章引述KatherineReekie的原话来论证要选择令自己着迷、愿意坚持的课题。原文的fasc
最新回复
(
0
)