首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组 的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2…,bn,2n)T.试写出线性方程组 的通解,并说明理由.
已知线性方程组 的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2…,bn,2n)T.试写出线性方程组 的通解,并说明理由.
admin
2017-07-10
86
问题
已知线性方程组
的一个基础解系为(b
11
,b
12
,…,b
1,2n
)
T
,(b
21
,b
22
,…,b
2,2n
)
T
,…,(b
n1
,b
n2
…,b
n,2n
)
T
.试写出线性方程组
的通解,并说明理由.
选项
答案
设方程组(I)与(Ⅱ)的系数矩阵分别为A和B,则由(I)的基础解系可知AB
T
=O,于是BA
T
=(AB
T
)
T
=O,所以A的n个行向量的转置也是方程组(Ⅱ)的n个解向量. 由于(b
11
,b
12
,…,b
1,2n
)
T
,(b
n1
,b
n2
,…,b
n,2n
)
T
,…,(b
n1
,b
n2
,…,b
b,2n
)
T
为方程组(I)的基础解系,所以该向量组线性无关,故r(B)=n,从而方程组(Ⅱ)的基础解系解向量的个数为2n—n=n. 又由于方程组(I)的未知数的个数为2n,基础解系解向量的个数为n,所以方程组(I)的系数矩阵的秩r(A)=n,于是A的n个行向量的转置是线性无关的,从而构成方程组(Ⅱ)的一个基础解系,于是方程组(Ⅱ)的通解为y=k
1
(a
11
,a
12
,…,a
1,2n
)
T
+k
2
(a
21
,a
22
,…,a
2,2n
)
T
+…+k
n
(a
n1
,a
n2
,…,a
n,2n
)
T
,其中k
1
,k
2
,…,k
n
为任意常数.
解析
本题考查齐次线性方程组基础解系的概念和通解的结构以及方程组系数矩阵的秩与基础解系中解向量个数的关系.
转载请注明原文地址:https://kaotiyun.com/show/rYt4777K
0
考研数学二
相关试题推荐
设A,B均为n阶矩阵,若E-AB可逆,证明E-BA可逆.
拟建一个容积为V的长方体水池,设它的底为正方形,如果池底单位面积的造价是四周单位面积造价的2倍,试将总造价表示成底边长的函数,并确定此函数的定义域。
证明曲线有位于同一直线上的三个拐点.
证明:函数在(0,0)点连续,fx(0,0),fy(0,0)存在,但在(0,0)点不可微.
验证函数yx=C1+C12x是差分方程yx+2-3yx+1+yx=0的解,并求y。=1,y1=3时方程的特解.
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=0,f(1)=1/3.证明:存在ξ∈(0,1/2),η∈(1/2,1),使得f’(ξ)+f’(η)=ξ2+η2.
设(1)计算行列式|A|;(2)当实数a为何值时,方程组Ax=β有无穷多解,并求其通解.
本题为“1x”型未定式,除可以利用第二类重要极限进行计算或化为指数函数计算外,由于已知数列的表达式,也可将n换为x转化为函数极限进行计算.一般[*]
求极限.
求极限
随机试题
下列哪种情况能使静脉血PO2降低
下列不属于孕产期保健质量指标的是
男性,18岁,因“急性阑尾炎”行“阑尾切除术”,病理为坏疽性阑尾炎。术后次晨起,患者表现为腹痛,烦躁不安,未解小便。查体:面色较苍白,皮肤湿冷,心率110/min,血压80/60mmHg,腹稍胀,全腹压痛,轻度肌紧张。肠鸣音减弱。该患者目前情况,可能
已确诊为输卵管妊娠破裂和失血性休克,紧急抢救措施应该是
A.整体化原则B.最优化原则C.知情同意原则D.协调一致原则E.及时准确有效的原则认真仔细地选择,使患者受益与代价比例适当的诊疗措施,遵循的是临床诊疗的医学道德原则中的
离散型随机变量X的分布为P(X=k)=cλk(k=0,1,2,…),则不等式不成立的是()。
某大型船厂有一大型重钢结构车间,总建筑面积23625m2,其设计方案对比项目如下:A方案:三跨,跨度45m,1350元/m2。B方案:四跨,跨度34m,1300元/m2。C方案:五跨,跨度27m,1250元/m2。
下列固定资产中,应计提折旧的是()。
下列关于上市公司公司债券投资者权益保护制度的表述中,符合证券法律制度规定的是()。
薯条:土豆:油炸
最新回复
(
0
)