首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量口是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中 (1)A2 (2)P-1AP (3)AT (4)E-A α肯定是其特征向量的矩阵共有( )
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量口是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中 (1)A2 (2)P-1AP (3)AT (4)E-A α肯定是其特征向量的矩阵共有( )
admin
2016-05-09
35
问题
设A是n阶矩阵,P是n阶可逆矩阵,n维列向量口是矩阵A的属于特征值λ的特征向量,那么在下列矩阵中
(1)A
2
(2)P
-1
AP
(3)A
T
(4)E-
A
α肯定是其特征向量的矩阵共有( )
选项
A、1个
B、2个
C、3个
D、4个
答案
B
解析
由Aα=λα,α≠0,有A
2
α=A(λα)=λAα=λ
2
α,α≠0,即α必是A
2
属于特征值λ
2
的特征向量.
又
知α必是矩阵E-
A属于特征值1-
λ的特征向量.关于(2)和(3)则不一定成立.这是因为
(P
-1
AP)(P
-1
α)=P
-1
Aα=λP
-1
α,
按定义,矩阵P
-1
AP的特征向量是P
-1
α.因为P
-1
与α不一定共线,因此α不一定是P
-1
AP的特征向量,即相似矩阵的特征向量是不一样的.
线性方程组(λE-A)χ=0与(λE-A
T
)χ=0不一定同解,所以α不一定是第二个方程组的解,即α不一定是A
T
的特征向量.所以应选B.
转载请注明原文地址:https://kaotiyun.com/show/rgw4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 A
设函数y=y(x)由确定,则函数y=y(x)在x=0对应点处的切线为________.
设φ连续,且x2+y2+z2=
设a,Aa,A2a线性无关,且3Aa-2A2a-A3a=0,其中A为3阶矩阵,a为3维列向量求A的特征值与特征向量;
设函数y=y(x)由方程x=dx确定,则=________
设f(x)在[0,﹢∞)上连续,且f(x)=dt在(Ⅱ)的基础上,任取x0>ξ>0,xn=2f(xn-1)(n≥1),证明:一ξ
设二次型f(x1,x2)=ax12+bx22+4x1x2经过正交变换x=Qy化为g(y1,y2)=2y12+2y1y2二次型f与g的矩阵分别为A与B求a,b的值
设函数y=f(x)由参数方程(0<t≤1)确定证明:y=f(x)在[1,﹢∞)上单调增加
设都是线性方程组AX=0的解向量,只要系数矩阵A为().
设A=,若齐次方程组AX=0的任一非零解均可用a线性表示,则a=().
随机试题
论述我国海洋污染防治的监督管理体制。
患者,女,16岁。枕部着地,昏迷10分钟后清醒,并自己回到家中,其后出现头痛,并呈逐渐加重伴呕吐,半小时后不省人事,急送医院。查体:BP130/90mmHg,P65次/分,R15次/分。浅昏迷,右枕部头皮挫伤,左侧瞳孔5mm,对光反应消失,右侧
待有足够的资料后,可进行规划方案的制定,不属其步骤的是()。
人程监理的工作性质有()的特点。
Thecostofround-tripairtransportationisincluded________thenine-daycruisepackage.
在某堂植物课教学中.王老师讲授“果实”概念时即选用可食用的(如橘子),又选用不可食用的(如棉籽),这样有利于学生准确掌握果实概念。运用了()。
Itusedtobesostraightforward(直接的).Ateamofresearchersworkingtogetherinthelaboratorywouldsubmittheresultsofthe
OneafternoonIwassittingatmyfavoritetableinarestaurant,waitingforthefoodIhadordered.SuddenlyI【36】thatamansit
Withthepicturesand______.
Foxesandfarmershavenevergotonwell.Thesesmalldog-likeanimalshavelongbeenaccusedofkillingfarmanimals.Theyare
最新回复
(
0
)