首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1_过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1-S2
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1_过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1-S2
admin
2021-01-19
66
问题
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1_过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S
1
,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S
2
,并设2S
1
-S
2
恒为1,求此曲线y=y(X)的方程.
选项
答案
曲线y=y(x)在点P(x,y)处的切线方程为 Y—y=y’(x—x),它与x轴的交点为[*]. 由于y’(x)>0,y(0)=1,因此y(x)>0(x>0), 于是[*] 又 S
2
=∫
0
x
y(t)dt. 根据已知条件2S
1
-S
2
=1,有 [*],代入y(0)=1,有y’(0)=1. 方程两边对x求导并化简得 yy"=y’
2
,这是可降阶方程. 令P=y’,则方程化为[*],分离变量得[*], 两边积分得P=C
1
y,即y’=C
1
y, 代入初始条件y(0)=1,y’(0)=1,得 C
1
=1,有[*],两边积分得y=C
2
e
x
,代入y(0)=1,得C
1
=1, 因此,所求曲线的方程为y=e
x
.
解析
[分析] 首先根据微积分的几何意义,求出S
1
和S
2
,然后由关系式2S
1
-S
2
=1得到一含有变限积分的函数方程问题,对方程两边求导,转化为微分方程问题.
[评注1] 本题将曲线切线问题、平面图彤的面积问题、含变限积分的函数方程问题以及微分方程问题综合起来,有一定的难度与计算量.
[评注2] 本题不是直接给出含变限积分的函数方程问题,而是由变化区间[0,x]上的面积用变限积分S
2
=∫
0
x
y(t)dt表示,转化为含有变限积分的函数方程问题.类似地,由变化区间上的体积、弧长等定积分的应用问题,也可以转化为含有变限积分的函数方程问题.
转载请注明原文地址:https://kaotiyun.com/show/rt84777K
0
考研数学二
相关试题推荐
证明:若矩阵A可逆,则其逆矩阵必然唯一.
设函数f(χ)在区间[a,b]上连续,且恒大于零,证明:∫f(χ)dχ∫≥(b-a)2
设其中A,B为n阶矩阵,A,B的伴随矩阵为A*,B*,求C的伴随矩阵C*.
设线性方程组(1)Ax=0的一个基础解系为α1=(1,1,1,0,2)T,α2=(1,1,0,1,1)T,α3=(1,0,1,1,2)T。线性方程组(2)Bx=0的一个基础解系为β1=(1,1,一1,一1,1)T,β2=(1,一1,1,一1,2)T,β3=
早晨开始下雪整天不停,中午一扫雪车开始扫雪,每小时扫雪体积为常数,到下午2点扫雪2km,到下午4点又扫雪1km,问降雪是什么时候开始的?
求下列隐函数的微分或导数:(Ⅰ)设ysinx-cos(x-y)=0,求dy;(Ⅱ)设方程确定y=y(x),求y’与y’’.
设A是m阶正定矩阵,B是m×n实矩阵.证明:BTAB正定r(B)=n.
函数与直线x=0,x=t(t>0)及y=0围成一曲边梯形.该曲边梯形绕x轴旋转一周得一旋转体,其体积为V(t),侧面积为S(t),在x=t处的底面积为F(t).(1)求的值;(2)计算极限
设y(x)是初值问题的解,则∫0+∞xy’(x)dx﹦()
若y=xex+x是微分方程y"一2y’+ay=bx+c的解,则()
随机试题
下列各项行为不属于消费者协会正确履行其职责的行为是【】
男性,30岁。因上腹隐痛1周,1天内排柏油样黑便5次就诊。胃镜示十二指肠球部溃疡并出血。以下处理哪项不正确
玉屏风散主要用于
处方正文内容包括()。
某工程建设项目施工招标在评标时进行资格审查,下列审查方法或办法中,正确的有()。
平均指标又称统计平均数,是反映同一总体中各个体标志值集中趋势的指标,是各变量值一般水平的代表值。平均指标主要有()及众数等。
证券公司受期货公司委托从事介绍业务,应当提供下列哪些服务?()
下列不属于标准理财投资工具的是()。
地陪导游员小万送两名散客乘坐16:20的航班从北京飞长沙,小万应该在()将客送到首都机场。
要改变窗体上文本框控件的数据源,应设置的属性是
最新回复
(
0
)