首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1_过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1-S2
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1_过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1-S2
admin
2021-01-19
29
问题
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1_过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S
1
,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S
2
,并设2S
1
-S
2
恒为1,求此曲线y=y(X)的方程.
选项
答案
曲线y=y(x)在点P(x,y)处的切线方程为 Y—y=y’(x—x),它与x轴的交点为[*]. 由于y’(x)>0,y(0)=1,因此y(x)>0(x>0), 于是[*] 又 S
2
=∫
0
x
y(t)dt. 根据已知条件2S
1
-S
2
=1,有 [*],代入y(0)=1,有y’(0)=1. 方程两边对x求导并化简得 yy"=y’
2
,这是可降阶方程. 令P=y’,则方程化为[*],分离变量得[*], 两边积分得P=C
1
y,即y’=C
1
y, 代入初始条件y(0)=1,y’(0)=1,得 C
1
=1,有[*],两边积分得y=C
2
e
x
,代入y(0)=1,得C
1
=1, 因此,所求曲线的方程为y=e
x
.
解析
[分析] 首先根据微积分的几何意义,求出S
1
和S
2
,然后由关系式2S
1
-S
2
=1得到一含有变限积分的函数方程问题,对方程两边求导,转化为微分方程问题.
[评注1] 本题将曲线切线问题、平面图彤的面积问题、含变限积分的函数方程问题以及微分方程问题综合起来,有一定的难度与计算量.
[评注2] 本题不是直接给出含变限积分的函数方程问题,而是由变化区间[0,x]上的面积用变限积分S
2
=∫
0
x
y(t)dt表示,转化为含有变限积分的函数方程问题.类似地,由变化区间上的体积、弧长等定积分的应用问题,也可以转化为含有变限积分的函数方程问题.
转载请注明原文地址:https://kaotiyun.com/show/rt84777K
0
考研数学二
相关试题推荐
证明:若矩阵A可逆,则其逆矩阵必然唯一.
求二元函数z=f(x,y)=x2y(4一x一y)在由直线x+y=6,x轴和y轴所围成的闭合区域D上的极值、最大值与最小值.
设f(x)二阶连续可导且f(0)=f’(0)=0,f’’(x)>0.曲线y=f(x)上任一点(x,f(x))(x≠0)处作切线,此切线在x轴上的截距为u,求
求下列函数的偏导数:
设函数y=y(x)满足△y=△x+o(△x),且y(0)=0,求函数y=y(x).
设V是向量组α1=(1,1,2,3)T,α2=(一1,1,4,一1)T,α3=(5,一1,一8,9)T所生成的向量空间,求V的维数和它的一个标准正交基.
求极限。
已知曲线L的方程367(1)讨论L的凹凸性;(2)过点(一1,0)引L的切线,求切点(x0,y0),并写出切线的方程;(3)求此切线与L(对应于x≤x0的部分)及x轴所围成的平面图形的面积.
设y=y(χ)是方程2χydχ+(χ2-1)dy=0及条件y(0)=1的解,则y(χ)dχ=()
设函数f(x)处处可导,且0≤f’(x)≤(k>0为常数),又设x0为任意一点,数列{x0}满足xn=f(xn-1)(n=1,2,…),试证:当n→∞时,数列{xn}的极限存在.
随机试题
过点M0(1,-1,0)且与平面x-y+3z=1平行的平面方程为______.
桑葚胚由多少个细胞组成( )。
A、辐射B、传导C、对流D、蒸发E、辐射+对流当外界温度等于或高于体表温度时,机体唯一散热的方式是
口腔流行病学中,牙周疾病的患病特点是
()是生产中“预防为主”的根本体现,也是安全生产的最高境界。
《建筑法》规定,建设单位应当自领取施工许可证之日起3个月内开工,因故不能按期开工的,应当向发证机关申请延期,则延期时限不超过()
业务宣传费按营业收入____________以内掌握使用。
下列词语中没有错别字的一组是()
为贯彻落实市委、市政府《关于率先行动改革优化营商环境实施方案》,进一步推动我市优化营商环境工作,保护各类市场主体的合法权益,促进本市经济和社会全面发展。我市成立深化改革转变工作作风优化营商环境领导小组办公室,具体职能为:做好全市深化改革转变工作作风优化营商
对一个给定的查询,通常会有许多种可能的处理策略,从这许多策略中找出最有效的查询执行计划的处理过程称做______。
最新回复
(
0
)