首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为四阶实对称矩阵,且A2+2A一3E=O,若r(A—E)=1,则二次型xTAx在正交变换下的标准形为( )
设A为四阶实对称矩阵,且A2+2A一3E=O,若r(A—E)=1,则二次型xTAx在正交变换下的标准形为( )
admin
2020-02-28
62
问题
设A为四阶实对称矩阵,且A
2
+2A一3E=O,若r(A—E)=1,则二次型x
T
Ax在正交变换下的标准形为( )
选项
A、y
1
2
+y
2
2
+y
3
2
一y
4
2
。
B、y
1
2
+y
2
2
+y
3
2
一3y
4
2
。
C、y
1
2
—y
2
2
—3y
3
2
一3y
4
2
。
D、y
1
2
+y
2
2
—3y
3
2
一3y
4
2
。
答案
B
解析
由A
2
+2A一3E=0有(A—E)(A+3E)=O,从而
r(A一E)+r(A+3E)≤4。
又因为 r(A—E)+r(A+3E)=r(E—A)+r(A+3E)
≥r[(E—A)+(A+3E)]
=r(4E)=4,
所以r(A—E)+r(A+3E)=4,则r(A+3E)=3。
于是齐次线性方程组(A—E)x=0与(A+3E)x=0分别有三个和一个线性无关的解,即λ=1与λ=一3分别是矩阵A的三重和一重特征值。故选B。
转载请注明原文地址:https://kaotiyun.com/show/rxA4777K
0
考研数学二
相关试题推荐
(1)如果矩阵A用初等列变换化为B,则A的列向量组和B的列向量组等价.(2)如果矩阵A用初等行变换化为B,则A的行向量组和B的行向量组等价.
设三阶实对称矩阵A的各行元素之和均为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T是线性方程组Ax=0的两个解。求正交矩阵Q和对角矩阵A,使得QTAQ=Λ。
设A,B为n阶矩阵.(1)是否有AB~BA;(2)若A有特征值1,2,…,n,证明:AB~BA.
已知α=是可逆矩阵A=的伴随矩阵A*的特征向量,特征值λ.求a,b,λ.
设三元非齐次线性方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,一1,1]T,η3+η1=[0,2,0]T,求该非齐次方程的通解.
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵).求:二次型XTAX的标准形;
已知是矩阵的一个特征向量。[img][/img]求参数a,b及特征向量p所对应的特征值;
设A是三阶实对称矩阵,且A2+2A=O,r(A)=2.求A的全部特征值;
随机试题
Itwasasummerevening.Iwassittingbytheopenwindow,readinga【C1】________Suddenly,Iheardsomeonecrying,"Help!Help!
用于控制疟疾症状的最佳抗疟药是
最可能的诊断是假如CT检查发现患者为脑叶出血,血肿超过40ml,患者颅压增高症状明显加重,处于浅昏迷状态,应首选下列何项措施
A.左下6B.右上5C.右上1D.右上ⅣE.左上Ⅲ左上乳尖牙
患者,女,35岁。月经周期正常,惟月经量少、色红、质稠,经期鼻衄,量不多,色暗红,伴手足心热,潮热颧红,舌红少苔,脉细数。其证候是
资产组合M的期望收益率为18%,标准离差为27.9%;资产组合N的期望收益率为13%,标准离差率为1.2。投资者张某和赵某决定将其个人资金投资于资产组合M和N中,张某期望的最低收益率为16%,赵某投资于资产组合M和N的资金比例分别为30%和70%。
建设工程的屋面防水工程、有防水要求的卫生间、房间和外墙面的防渗漏,最低保修期限为()年。
8,17,24,37,()
《民法典》规定:“物权的种类和内容,由法律规定。”对此,下列说法中正确的是()
Thatshewas(i)_____rockclimbingdidnotdiminishher(ii)_____tojoinherfriendsonarock-climbingexpedition.
最新回复
(
0
)