首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三元非齐次线性方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,一1,1]T,η3+η1=[0,2,0]T,求该非齐次方程的通解.
设三元非齐次线性方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,一1,1]T,η3+η1=[0,2,0]T,求该非齐次方程的通解.
admin
2019-02-23
87
问题
设三元非齐次线性方程组的系数矩阵A的秩为1,已知η
1
,η
2
,η
3
是它的三个解向量,且η
1
+η
2
=[1,2,3]
T
,η
2
+η
3
=[2,一1,1]
T
,η
3
+η
1
=[0,2,0]
T
,求该非齐次方程的通解.
选项
答案
r(A)=1,AX=b的通解应为k
1
ξ
1
+k
2
ξ
2
+η,其中对应齐次方程AX=0的解为 ξ
1
=(η
1
+η
2
)一(η
2
+η
3
)=η
1
一η
3
=[一1,3,2]
T
, ξ
1
=(η
1
+η
2
)一(η
2
+η
3
)=η
1
一η
3
=[2, 3,1]
T
. 因ξ
1
,ξ
2
线性无关,故是AX=0的基础解系. 取AX=b的一个特解为 η=[*](η
3
+η
1
)=[0,1,0]
T
. 故AX=b的通解为 k
1
[一1,3,2]
T
+k
2
[2,一3,1]
T
+[0,1,0]
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/pej4777K
0
考研数学二
相关试题推荐
求微分方程的通解.
设A是m×n阶矩阵,若ATA=O,证明:A=O.
证明:,其中a>0为常数.
令f(x)=arctanx,由微分中值定理得[*]
设D由抛物线y=χ2,y=4χ2及直线y=1所围成.用先χ后y的顺序,将I=f(χ,y)dχdy,化成累次积分.
求正交变换化二次型χ12+χ22+χ32-4χ1χ2-4χ2χ3-4χ1χ3为标准形.
设4元线性方程组(Ⅰ)为又已知某齐次线性方程组(Ⅱ)的通解为k1(0,1,1,0)+k2(一1,2,2,1).(1)求线性方程组(Ⅰ)的基础解系;(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解,若没有,则说明理由.
设函数f(x,y)可微,且对任意x,y都有<0,则使不等式f(x1,y1)<f(x2,y2)成立的一个充分条件是
设z=f(χ,y)=χ2arctan-y2arctan,则=_______.
随机试题
消费者是指为满足()而购买产品和服务的所有个人和家庭。
群体决策的优点有()
患儿,男性,2岁。因急性腹泻3小时来门诊求治。粪便常规检查:白细胞满视野,红细胞20~25/HP,巨噬细胞5~8/HP,患儿最可能的诊断是
男性,18岁,饭后剧烈运动后突然出现剧烈腹痛,向腰背部放射,呕吐,应考虑为
下列做法正确的是()
下列情形中,注册会计师认为可能为管理层提供舞弊机会的是()。
阅读以下材料,回答第1)、2)题。美国哈佛大学心理学家加德纳提出的“多元智能理论”认为,人的智能是多元的,每个人都在不同程度上拥有着9种基本智能,只不过,不同个体的优势智能是存在差别的。赵元任是解放前清华大学国学大师之一,他精通多种国内方言和八
酿造酒是借着酵母作用,把含淀粉和糖质原料的物质进行发酵,产生酒精成分从而形成酒。下列属于酿造酒的是()。
【B1】【B18】
Youwillhearamanagerinatravelcompanyaddressingagroupofemployeesonhowtowriteatourismmarketingplan.Asyou
最新回复
(
0
)