首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4线性无关,β1=2α1+α3+α4,β2=2α1+α2+α3,β3=α2一α4, β4=α3+α4,β5=α2+α3. (1)求r(β1,β2,β3,β4,β5); (2)求β1,β2,β3,β4,β5的一个最大无关
设α1,α2,α3,α4线性无关,β1=2α1+α3+α4,β2=2α1+α2+α3,β3=α2一α4, β4=α3+α4,β5=α2+α3. (1)求r(β1,β2,β3,β4,β5); (2)求β1,β2,β3,β4,β5的一个最大无关
admin
2017-08-07
125
问题
设α
1
,α
2
,α
3
,α
4
线性无关,β
1
=2α
1
+α
3
+α
4
,β
2
=2α
1
+α
2
+α
3
,β
3
=α
2
一α
4
,
β
4
=α
3
+α
4
,β
5
=α
2
+α
3
.
(1)求r(β
1
,β
2
,β
3
,β
4
,β
5
);
(2)求β
1
,β
2
,β
3
,β
4
,β
5
的一个最大无关组.
选项
答案
(1)β
1
,β
2
,β
3
,β
4
,β
5
对α
1
,α
2
,α
3
,α
4
的表示矩阵为 [*] 用初等行变换化阶梯形矩阵: [*] 则r(β
1
,β
2
,β
3
,β
4
,β
5
)=r(C)=3. (2)记C的列向量组为γ
1
,γ
2
,γ
3
,γ
4
,γ
5
.则由(1)的计算结果知γ
1
,γ
2
,γ
4
是线性无关的.又 (β
1
,β
2
,β
4
)=(α
1
,α
2
,α
3
,α
4
)(γ
1
,γ
2
,γ
4
)得到r(β
1
,β
2
,β
4
)=r(γ
1
,γ
2
,γ
4
)=3,β
1
,β
2
,β
4
线性无关,是β
1
,β
2
,β
3
,β
4
,β
5
的一个最大线性无关组.
解析
转载请注明原文地址:https://kaotiyun.com/show/rzr4777K
0
考研数学一
相关试题推荐
设矩阵,则A与B().
设A=,A*是A的伴随矩阵,则(A*)-1=_________.
设λ0是n阶矩阵A的特征值,且齐次线性方程组(λ0E-A)X=0的基础解系为η1,η2,则A的属于λ0的全部特征向量为().
已知4阶方阵A=(a1,a2,a3,a4),a1,a2,a3,a4均为4维列向量,其a2,a3,a4线性无关,a1=2a1-a3,如果β=a1+a2+a3+a4,求线性方程组Ax=β的通解.
设n阶矩阵A非奇异(n≥2),A*是矩阵A的伴随矩阵,则().
设A=,a=(a,1,1)T,已知Aa与a线性相关,则a=_________.
设n元线性方程组Ax=b,其中(Ⅰ)证明行列式|A|=(n+1)an;(Ⅱ)a为何值时,方程组有唯一解?求x1;(Ⅲ)a为何值时,方程组有无穷多解?求通解.
设a1,a2,a3是四元非齐次方程组Ax=b的三个解向量,且秩r(A)=3,a1=(1,2,3,4)T,a2+a3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则f’(1)=().
(1997年试题七)设B是秩为2的5×4矩阵,α1=[1,1,2,3]T,α2=[一1,1,4,一1]T,α3=[5,一1,一8,9]T,是齐次线性方程组Bx=0的解向量,求Bx=0的解空间的一个标准正交基.
随机试题
多巴胺受体激动药包括
试述电视胸腔镜。
按现行(FIGO,1988)的子宫内膜癌手术分期标准,ⅡB期是
患儿,5岁半。家长代诉经常感冒,睡中遗尿,每夜1~2次,小便淡黄,食欲不振,舌淡红,苔薄白,脉沉无力。治疗应首选
下列哪项不是被覆黏膜的特征
A.I期临床试验B.Ⅱ期临床试验C.V期临床试验D.Ⅳ期临床试验E.Ⅲ期临床试验对目标适应证患者(多中心试验)治疗作用的初步评价的是()
联系的条件是指()。
Vitaminsareorganiccompoundsnecessaryinsmallamountsinthedietforthenormalgrowthandmaintenanceoflifeofanimals,i
已知f’(ex)=xe-x,且f(1)=0,则f(x)=__________.
______大家都想走,______我们就一起走吧。
最新回复
(
0
)