首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型f(χ1,χ2,χ3)=(1-a)χ12+(1-a)χ12+2χ32+2(1+a)χ1χ2的秩为2. (1)求a. (2)求作正交变换X=QY,把f(χ1,χ2,χ3)化为标准形. (3)求方程f(χ1,χ2,χ3)=0的
已知二次型f(χ1,χ2,χ3)=(1-a)χ12+(1-a)χ12+2χ32+2(1+a)χ1χ2的秩为2. (1)求a. (2)求作正交变换X=QY,把f(χ1,χ2,χ3)化为标准形. (3)求方程f(χ1,χ2,χ3)=0的
admin
2018-11-23
11
问题
已知二次型f(χ
1
,χ
2
,χ
3
)=(1-a)χ
1
2
+(1-a)χ
1
2
+2χ
3
2
+2(1+a)χ
1
χ
2
的秩为2.
(1)求a.
(2)求作正交变换X=QY,把f(χ
1
,χ
2
,χ
3
)化为标准形.
(3)求方程f(χ
1
,χ
2
,χ
3
)=0的解.
选项
答案
(1)此二次型的矩阵为 [*] 则r(A)=2,|A|=0.求得|A|=-8a,得a=0. [*] (2)|λE-A|=[*]=λ(λ-2)
2
, 得A的特征值为2,2,0. 对特征值2求两个正交的单位特征向量: [*] 得(A-2E)X=0的同解方程组χ
1
-χ
2
=0,求出基础解系η
1
=(0,0,1)
T
,η
2
=(1,1,0)
T
.它们正交,单位化:α
1
=η
1
,α
2
=[*] 方程χ
1
-χ
2
=0的系数向量η
3
=(1,-1,0)
T
和η
1
,η
2
都正交,是属于特征值0的一个特征向量,单位化得 α
3
=[*] 作正交矩阵Q=(α
1
,α
2
,α
3
),则 Q
T
AQ=[*] 作正交变换X=QY,则f化为Y的二次型f=2y
1
2
+2y
2
2
. (3)f(X)=χ
1
2
+χ
2
2
+2χ
3
2
+2χ
1
χ
2
=(χ
1
+χ
2
)
2
+2χ
3
2
. 于是f(χ
1
,χ
2
,χ
3
)=0[*] 求得通解为:[*],c任意.
解析
转载请注明原文地址:https://kaotiyun.com/show/s1M4777K
0
考研数学一
相关试题推荐
设对x轴的转动惯量Iz=_________.
计算dxdydz,其中Ω由平面z=0,z=1及曲面x2+y2=2围成.
设A为m×n实矩阵,E为n阶单位矩阵,矩阵B=λE+ATA,试证:当λ>0时,矩阵B为正定矩阵·
已知函数y=e2x+(x+1)ex是二阶常系数线性非齐次方程y”+ay’+by=cex的一个特解,试确定常数a,b,c及该方程的通解.
设f(x)为连续函数.求初值问题[*]的解y(x),其中a是正常数.
(95年)计算曲面积分其中∑为锥面在柱体x2+y2≤2x内的部分.
(11年)已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,f(x,y)dzdy=a,其中D={(x,y)|0≤x≤1,0≤y≤1),计算二重积分
(87年)问a、b为何值时,线性方程组有唯一解、无解、有无穷多组解?并求出有无穷多解时的通解.
(09年)若二阶常系数线性齐次微分方程y"+ay’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y"+ay’+by=x满足条件y(0)=2,y’(0)=0的解为y=_______.
设y1(x)、y2(x)为二阶变系数齐次线性方程y″+p(x)y′+q(x)y=0的两个特解,则C1y1(x)+C2y2(x)(C1,C2为任意常数)是该方程通解的充分条件为
随机试题
某项目部承建一座泥质防渗工艺的大型垃圾填埋场,设计日消纳量为l000工,经现场调查,只有一条4m宽的四级公路通至距市区10krn的场区。施工过程发生以下事件:1、项目部在会审设计图时,发现全部设计中未见新建通往场区的道路设计,项目部对此事未向建设单位和设计
美国全美期货业协会要求,对于()等,期货经纪商除了要求客户签署风险揭示书外,还要再签署一份附加风险揭示书。Ⅰ.已退休人士Ⅱ.年收入低于2.5万美元者Ⅲ.净资产低于2.5万美元者Ⅳ.无期货期权投资经验者
根据契税法律制度规定,以划拨方式取得土地使用权,经批准转让房地产时应补缴的契税,以()作为计税依据。
下列抽样风险中,会影响审计效果导致注册会计师出具不恰当审计意见的抽样风险有()。
关于累犯,下列说法错误的是()。
偶然打开电视,正播《西游记》中《三打白骨精》一折。剧情可以倒背如流,不知为什么竟看得入神,屏幕上晃动些什么,其实并不重要。看毕,我终于相信,一部《红楼梦》,政治家们当百科全书,才子佳人当恋爱指南这一真理。二十多年前,我还是个毛头小子。那时《孙悟
决策支持系统的基本组成部分包括()。
A——expoJ——reserveaspotB——registrationfeeK——themezones
A、Enteringalargecompanywithoutapplication.B、Programminghumanfeelingsintomachines.C、Decidingone’sbestpartnerthroug
NEWYORK--Everysooften,lateatnight,DavidWoodlandstealsawaytothedenofhishomeinAberdeen,Washington,sothathec
最新回复
(
0
)