(96年)设A=I一ξξT,其中I是n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明: (1)A2=A的充要条件是ξTξ=1; (2)当ξTξ=1时,A是不可逆矩阵.

admin2017-04-20  39

问题 (96年)设A=I一ξξT,其中I是n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:
(1)A2=A的充要条件是ξTξ=1;
(2)当ξTξ=1时,A是不可逆矩阵.

选项

答案(1)A2=(I一ξξT)(I一ξξT)=I一2ξξT+ξξTξξT =I一2ξξT+ξ(ξTξ)ξT=I一2ξξT+(ξTξ)ξξT =I一(2一ξTξ)ξξT A2=A即I一(

解析
转载请注明原文地址:https://kaotiyun.com/show/oMu4777K
0

最新回复(0)