首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二维随机变量(X,Y)的概率分布为 又P{X=1}=0.5,且X与Y不相关. (Ⅰ)求未知参数a,b,c; (Ⅱ)事件A={X=1}与B={max(X,Y)=1}是否独立,为什么? (Ⅲ)随机变量X+Y与X-Y是否相关,是否独立?
已知二维随机变量(X,Y)的概率分布为 又P{X=1}=0.5,且X与Y不相关. (Ⅰ)求未知参数a,b,c; (Ⅱ)事件A={X=1}与B={max(X,Y)=1}是否独立,为什么? (Ⅲ)随机变量X+Y与X-Y是否相关,是否独立?
admin
2019-08-06
95
问题
已知二维随机变量(X,Y)的概率分布为
又P{X=1}=0.5,且X与Y不相关.
(Ⅰ)求未知参数a,b,c;
(Ⅱ)事件A={X=1}与B={max(X,Y)=1}是否独立,为什么?
(Ⅲ)随机变量X+Y与X-Y是否相关,是否独立?
选项
答案
(Ⅰ)应用联合分布、边缘分布关系及X与Y不相关求参数a、b、c. 由于P{X=1}=0.5,故P{X=-1}=0.5,a=0.5-0.1-0.1=0.3. 又X与Y不相关[*] E(XY)=EX.EY,其中EX=(-1)×0.5+1×0.5=0. XY可能取值为-1,0,1,且 P{XY=-1}=P{X=-1,Y=1}+P{X=1,Y=-1}=0.1+b, P{XY=1}=P{X=1,Y=1}+P{X=-1,Y=-1}=0.1+c, P{XY=0}=P{X=-1,Y=0}+P{X=1,Y=0}=a+0.1, 所以E(XY)=-0.1-b+0.1+c=c-b,由E(XY)=EXEY=0 [*] c-b=0,b=c,又b+0.1+c=0.5,所以b=c=0.2. (Ⅱ)由于A={X=1}[*] B={max(X,Y)=1},P(AB)=P(A)=0.5,0<P(B)<1,又P(A)P(B)=0.5P(B)<0.5=P(AB),即P(AB)≠P(A)P(B),所以A与B不独立. (Ⅲ)因为Cov(X+Y,X-Y)=Cov(X,X)-Cov(X,Y)+Cov(Y,X)-Cov(Y,Y)=DX-DY, DX=EX
2
-(EX)
2
=1,EY=0,DY=EY
2
-(EY)
2
=0.6, 所以Cov(X+Y,X-Y)=1-0.6=0.4≠0,X+Y与X-Y相关[*] X+Y与X-Y不独立.
解析
转载请注明原文地址:https://kaotiyun.com/show/s5J4777K
0
考研数学三
相关试题推荐
证明:用二重积分证明
设u=u(x,y,z)连续可偏导,令若证明:u仅为θ与φ的函数.
设总体X~N(0,σ2),X1,X2,…,Xn为总体X的简单随机样本,与S2分别为样本均值与样本方差,则().
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a2)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得
设连续非负函数f(x)满足f(x)f(-x)=1,则=______.
设函数y=f(x)二阶可导,f’(x)≠0,且与x=φ(y)互为反函数,求φ’’(y).
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f’’(x)|≤b,其中a,b都是非负常数,c为(0,1)内任意一点.写出f(x)在x=c处带Lagrange型余项的一阶泰勒公式;
设f(x)二阶连续可导,且则().
设随机变量X在(0,1)上服从均匀分布,现有一常数a,任取X的四个值,已知至少有一个大于a的概率为0.9,问a是多少?
随机试题
简述文化的特征。
国际环境法中的经济刺激措施包括【】
王安石是北宋诗文革新运动的领袖。()
A.六味地黄丸B.左归丸C.桂附地黄丸D.二仙汤E.人参养荣汤绝经妇女骨质疏松症之阴阳两虚证,治宜选用
合理的联合用药的目的
患者,男,50岁。脑血管意外,长期卧床,无自理能力。根据奥瑞姆的自理模式,这时护士提供的护理应属于何种补偿系统
某建设项目总投资9000万元,资金来源包括亚洲开发银行贷款折合人民币2500万元,交通银行贷款3000万元,其他企业投入3500万元,根据国家现行投资管理规定,该建设项目应按照( )。
心理学家勒温通过实验发现()领导方式所带来的工作效率最高。
2×16年1月1日,A公司支付2360万元购入甲公司于当日发行的5年期一般公司债券20万张,每张面值100元,票面利率7%,每年年末付息,到期一次还本。为取得该债券,A公司另支付相关费用6.38万元。A公司管理该项金融资产的业务模式为收取本金和利息,经计算
在下列针对中央银行资产负债的变动中,使得商业银行体系准备金增加的有()。
最新回复
(
0
)