首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求二元函数z=f(x,y)=x2y(4一x一y)在由直线x+y=6,x轴和y轴所围成的闭合区域D上的极值、最大值与最小值.
求二元函数z=f(x,y)=x2y(4一x一y)在由直线x+y=6,x轴和y轴所围成的闭合区域D上的极值、最大值与最小值.
admin
2019-05-11
111
问题
求二元函数z=f(x,y)=x
2
y(4一x一y)在由直线x+y=6,x轴和y轴所围成的闭合区域D上的极值、最大值与最小值.
选项
答案
由方程组[*]得线段x=0(0≤y≤6)及点(4,0),(2,1).而点(4,0)及线段x=0(0≤y≤6)在D的边界上,只有点(2,1)在D内部,可能是极值点。 f"
xx
=8y一6xy一2y
2
,f"
xy
=8x一3x
2
一4xy,f"
yy
=一2x
2
. 在点(2,1)处, A=[*]=一8,B
2
一AC=一32<0,且A<0,因此点(2,1)是z=f(x,y)的极大值点,极大值f(2,1)=4. 在D的边界x=0(0≤y≤6)及y=0(0≤x≤6)上,f(x,y)=0.在边界x+y=6上,y=6一x. 代入f(x,y)中得,z=2x
3
一12x
2
(0≤x≤6). 由z’=6x
2
一24x=0得x=0,x=4.在边界x+y=6上对应x=0,4,6处z的值分别为: z|
x=0
=2x
3
—12x
2
|
x=0
=0,z|
x=4
=2x
3
—12x
2
|
x=4
=一64,z|
x=6
=2x
3
一12x
2
|
x=6
=0. 因此知z=f(x,y)在边界上的最大值为0,最小值为f(4,2)=一64. 将边界上最大值和最小值与驻点(2,1)处的值比较得,z=f(x,y)在闭区域D上的最大值为f(2,1)=4,最小值为f(4,2)=一64.
解析
转载请注明原文地址:https://kaotiyun.com/show/sAV4777K
0
考研数学二
相关试题推荐
设f(χ)在区间[0,1]上可积,当0≤χ≤1时,|f(χ)-f(y)|≤|arctanχ-arctany|,又f(1)=0,证明:|∫01f(χ)dχ|≤ln2.
设siny+χey=0,当y=0时,求
设f(χ)可导,y=f(cos2χ),当χ=-处取增量△χ=-0.2时,△y的线性部分为0.2,求f′().
n维列向量组α1,…,αn-1线性无关,且与非零向量β正交.证明:α1,…αn-1,β线性无关.
=_______.
求微分方程(1-χ2)y〞-χy′=0的满足初始条件y(0)=0,y′(0)=1的特解.
求微分方程χ2y′+χy=y2满足初始条件y(1)=1的特解.
设A=的一个特征值为λ1=2,其对应的特征向量为ξ1=(1)求常数a,b,c;(2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
设常数k>0,函数内零点个数为()
设f(x)是连续函数.(1)求初值问题的解,其中a>0;(2)若|f(x)|≤k,证明:当x≥0时,有|y(x)|≤(eax-1).
随机试题
外观质量得分率,指()外观质量实际得分占应得分数的百分数。
当企业因预防性需求而确定持有的现金余额时,一般不需要考虑的因素是()
呃声洪亮,冲逆而出,烦躁,口臭,渴喜冷饮,苔黄,脉滑数,治疗时宜用何方与柿蒂相伍
下列哪项不是维护心理健康的原则
耳屏前,下颌骨髁状突后缘的腧穴是
在设备安装过程的质量控制中,安装单位自检确认符合安装技术标准后,应提请监理工程师进行检验,经监理工程师检查合格,安装单位方可进行( )工作。
(2012年)下列说法符合企业所得税关于公益性捐赠支出相关规定的是()。
甲公司为增值税一般纳税人,适用的增值税税率为17%,所得税税率25%,售价中均不含增值税。假定销售商品和提供劳务均符合收入确认条件,其成本在确认收入时逐笔结转,不考虑其他因素。2016年12月,甲公司发生如下交易或事项:(1)1日,与乙公司签订为
根据现行《公司法》,下列有关有限公司的表述哪个是错误的?
中央作出新一轮支援新疆的战略部署后,某单位很快组成由党办、人事处、业务处参加的推荐小组,确定了援疆干部人选。这三部门的推荐意见分别是:党办:从甲、乙、丙三人中选派出一至两人。人事处:如果不选派甲,就不选派乙和丙。业务处:只有不选派乙和丙
最新回复
(
0
)