首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设D是有界闭区域,下列命题中错误的是
设D是有界闭区域,下列命题中错误的是
admin
2018-11-22
60
问题
设D是有界闭区域,下列命题中错误的是
选项
A、若f(x,y)在D连续,对D的任何子区域D
0
均有
f(x,y)dσ=0,则f(x,y)≡0(
(x,y)∈D).
B、若f(x,y)在D可积,f(x,y)≥0但不恒等于0 ((x,y)∈D),则
f(x,y)dσ>0.
C、若f(x,y)在D连续,
f
2
(x,y)dσ=0,则f(x,y)≡0 ((x,y)∈D).
D、若f(x,y)在D连续,f(x,y)>0 ((x,y)∈D),则
f(x,y)dσ>0.
答案
B
解析
直接指出其中某命题不正确.
因为改变有限个点的函数值不改变函数的可积性及相应的积分值,因此命题(B)不正确.
设(x
0
,y
0
)是D中某点,令f(x,y)=
则在区域D上f(x,y)≥0且不恒等于0,但
f(x,y)dσ=0.因此选B.
或直接证明其中三个是正确的.
命题(A)是正确的.用反证法、连续函数的性质及二重积分的不等式性质可得证.若f(x,y)在D不恒为零→
(x
0
,y
0
)∈D,f(x
0
,y
0
)≠0,不妨设f(x
0
,y
0
)>0,由连续性→
有界闭区域D
0
D,且当(x,y)∈D
0
时f(x,y)>0 →
f(x,y)dσ>0,与已知条件矛盾.因此,f(x,y)≡0 (
(x,y)∈D).
命题(D)是正确的.利用有界闭区域上连续函数达到最小值及重积分的不等式性质可得证.这是因为f(x,y)≥
(x,y)=f(x
0
,y
0
)>0,其中(x
0
,y
0
)是D中某点.于是由二重积分的不等式性质得
f(x,y)dσ≥f(x
0
,y
0
)σ>0,其中σ是D的面积.
命题(C)是正确的.若f(x,y)≠0 → 在(x,y)∈D上f
2
(x,y)≥0且不恒等于0.由假设f
2
(x,y)在D连续→
f
2
(x,y)dσ>0,与已知条件矛盾.于是f(x,y)≡0在D上成立.因此选B.
转载请注明原文地址:https://kaotiyun.com/show/sBM4777K
0
考研数学一
相关试题推荐
设由x=zey+z确定z=z(x,y),则dz(e,0)=___________.
设A=为BX=0的解向量,且AX=α3有解.(Ⅰ)求常数a,b。(Ⅱ)求BX=0的通解.
设D:(x2+y2)2≤4(x2—y2),则(x—y)2dxdy=___________.
设f=xTAx,g=xTBx是两个n元正定二次型,则下列未必是正定二次型的是()
设X1,X2,…,Xn是来自总体X~N(0,1)的简单随机样本,则统计量服从()
求一个正交变换把二次曲面的方程3χ2+5y2+5z2+4χy-4χz-10yz=1化成标准方程.
已知A是三阶实对称矩阵,满足A4+2A3+A2+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E)。
设X1,X2,…,Xn为来自区间[一a,a]上均匀分布的总体X的简单随机样本,则参数a的矩估计量为________.
曲线y=x2,x=y2围成的平面图形绕x轴旋转一周所得旋转体的体积为_____.
随机试题
设函数z=2(x-y)-x2-y2,则其极值点为().
维生素B1缺乏可引起
对目前合成洗涤剂造成的环境问题,下述哪项描述不正确
在下列选项中,属于我国法定的证据种类的有()。
下列关于可转换债券的表述正确的是()。①可转换债券是一种附有转股权的特殊债券②可转换债券具有双重选择权③可转换债券具有优先赎回权④可转换债券是指其持有者可以在一定时期内按一定比例或价格将之转换成一定数量的另一种证券的证券
在民事纠纷的解决途径中,那种途径具有强制性()。
你发现你的上级在处理一起治安案件时,明显偏袒一方,你怎么办?
不属于《中华人民共和国教育法》明确规定的学生的义务是
Theswitching-onceremonybecameincreasinglycompetitivebecause
A、Gotothelabforaquicklook.B、Checkonwhat’sfordinner.C、Havearunbeforetheyeat.D、Goandseeiftheyhavedropped
最新回复
(
0
)