设函数f(x)二阶可导,且f′(x)>0,f"(x)>0,△y=f(x+△x)一f(x),其中△x<0,则( ).

admin2019-03-11  32

问题 设函数f(x)二阶可导,且f′(x)>0,f"(x)>0,△y=f(x+△x)一f(x),其中△x<0,则(    ).

选项 A、△y>dy>0
B、△y<dy<0
C、dy>△y>0
D、dy<△y<0

答案D

解析 根据微分中值定理,△y=f(x+△x)一f(x)=f′(ξ)△x<0(x+△x<ξ<x),dy=f′(x)△x<0,因为f"(x)>0,所以f′(x)单调增加,而ξ<x,所以f′(ξ)<f′(x),
    于是f′(ξ)△x>f′(x)△x,即dy<△y<0,选(D).
转载请注明原文地址:https://kaotiyun.com/show/sCP4777K
0

最新回复(0)